-相似三角形知识点及典型例题.doc
《-相似三角形知识点及典型例题.doc》由会员分享,可在线阅读,更多相关《-相似三角形知识点及典型例题.doc(9页珍藏版)》请在咨信网上搜索。
1、相似三角形知识点及典型例题知识点归纳:1、三角形相似的判定方法(1)定义法:对应角相等,对应边成比例的两个三角形相似。(2)平行法:平行于三角形一边的直线和其它两边(或两边的延长线)相交,所构成的三角形与原三角形相似。(3)判定定理1:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似。简述为:两角对应相等,两三角形相似。(4)判定定理2:如果一个三角形的两条边和另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似。简述为:两边对应成比例且夹角相等,两三角形相似。(5)判定定理3:如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似
2、。简述为:三边对应成比例,两三角形相似。(6)判定直角三角形相似的方法:以上各种判定均适用。如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似。 直角三角形被斜边上的高分成的两个直角三角形与原三角形相似。#直角三角形中,斜边上的高是两直角边在斜边上射影的比例中项。每一条直角边是这条直角边在斜边上的射影和斜边的比例中项。 如图,RtABC中,BAC=90,AD是斜边BC上的高,则有射影定理如下: (1)(AD)2=BDDC, (2)(AB)2=BDBC , (3)(AC)2=CDBC 。注:由上述射影定理还可以证明勾股定理。即 (AB)2
3、+(AC)2=(BC)2。典型例题:例1 如图,已知等腰ABC中,ABAC,ADBC于D,CGAB,BG分别交AD,AC于E、 F,求证:BE2EFEG证明:如图,连结EC,ABAC,ADBC, ABCACB,AD垂直平分BCBEEC,12,ABC-1ACB-2,即34,又CGAB,G3,4G又CEGCEF,CEFGEC,=EC2EG EF,故EB2=EFEG【解题技巧点拨】本题必须综合运用等腰三角形的三线合一的性质,线段的垂直平分线的性质和相似三角形的基本图形来得到证明而其中利用线段的垂直平分线的性质得到BE=EC,把原来处在同一条直线上的三条线段BE,EF,EC转换到相似三角形的基本图形中
4、是证明本题的关键。例2 已知:如图,AD是RtABC斜BC上的高,E是AC的中点,ED与AB的延长线相交于F,求证:=证法一:如图,在RtABC中,BACRt,ADBC,3C,又E是RtADC的斜边AC上的中点,ED=ACEC,2C,又12,13,DFBAFD,DFBAFD, (1)又AD是RtABC的斜边BC上的高,RtABDRtCAD,= (2)由(1)(2)两式得=,故=证法二:过点A作AGEF交CB延长线于点G,则= (1)E是AC的中点,EDAC,D是GC的中点,又ADGC,AD是线段GC的垂直平分线,AGAC (2)由(1)(2)两式得:=,证毕。【解题技巧点拨】本题证法中,通过连
5、续两次证明三角形相似,得到相应的比例式,然后通过中间比“”过渡,使问题得证,证法二中是运用平行线分线段成比例定理的推论,三角形的中位线的判定,线段的垂直平分线的判定与性质使问题得证一、如何证明三角形相似例1、如图:点G在平行四边形ABCD的边DC的延长线上,AG交BC、BD于点E、F,则AGD 。例2、已知ABC中,AB=AC,A=36,BD是角平分线,求证:ABCBCD例3:已知,如图,D为ABC内一点连结ED、AD,以BC为边在ABC外作CBE=ABD,BCE=BAD求证:DBEABC例4、矩形ABCD中,BC=3AB,E、F,是BC边的三等分点,连结AE、AF、AC,问图中是否存在非全等
6、的相似三角形?请证明你的结论。二、如何应用相似三角形证明比例式和乘积式例5、ABC中,在AC上截取AD,在CB延长线上截取BE,使AD=BE,求证:DFAC=BCFE例6:已知:如图,在ABC中,BAC=900,M是BC的中点,DMBC于点E,交BA的延长线于点D。求证:(1)MA2=MDME;(2)例7:如图ABC中,AD为中线,CF为任一直线,CF交AD于E,交AB于F,求证:AE:ED=2AF:FB。三、如何用相似三角形证明两角相等、两线平行和线段相等。例8:已知:如图E、F分别是正方形ABCD的边AB和AD上的点,且。求证:AEF=FBD例9、在平行四边形ABCD内,AR、BR、CP、
7、DP各为四角的平分线, 求证:SQAB,RPBC例10、已知A、C、E和B、F、D分别是O的两边上的点,且ABED,BCFE,求证:AFCD例11、直角三角形ABC中,ACB=90,BCDE是正方形,AE交BC于F,FGAC交AB于G,求证:FC=FG例12、RtABC锐角C的平分线交AB于E,交斜边上的高AD于O,过O引BC的平行线交AB于F,求证:AE=BF课后作业一、填空题1.已知:在ABC中,P是AB上一点,连结 CP,当满足条件ACP=_或APC=_或 AC2=_时,ACPABC2.两个相似三角形周长之比为49,面积之和为291,则面积分别是_。3.如图,DEFG是RtABC的内接正
8、方形,若CF8,DG4,则BE_。4如图,直角梯形 ABCD中,ADBC,ADCD,ACAB,已知AD4,BC9,则 AC_。5ABC中,AB15,AC9,点D是AC上的点,且AD=3,E在AB上,ADE与ABC相似,则AE的长等于_。6.如图,在正方形网格上画有梯形ABCD,则BDC的度数为_。7.ABC中,ABAC,A36,BC1,BD平分ABC交于D,则BD_,AD_,设ABx,则关于x的方程是_.8如图,已知D是等边ABC的BC边上一点,把ABC向下折叠,折痕为MN,使点A落在点D处,若BDDC23,则AMMN=_。二、选择题9.如图,在正ABC中,D、E分别在AC、AB上,且,AE=
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 相似 三角形 知识点 典型 例题
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【丰****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【丰****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。