全等三角形经典培优题型(含答案解析).doc
《全等三角形经典培优题型(含答案解析).doc》由会员分享,可在线阅读,更多相关《全等三角形经典培优题型(含答案解析).doc(12页珍藏版)》请在咨信网上搜索。
专业资料 全等三角形的提高拓展训练 全等三角形的性质:对应角相等,对应边相等,对应边上的中线相等,对应边上的高相等,对应角的角平分线相等,面积相等. 寻找对应边和对应角,常用到以下方法: (1)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边. (2)全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角. (3)有公共边的,公共边常是对应边. (4)有公共角的,公共角常是对应角. (5)有对顶角的,对顶角常是对应角. (6)两个全等的不等边三角形中一对最长边(或最大角)是对应边(或对应角),一对最短边(或最小角)是对应边(或对应角). 要想正确地表示两个三角形全等,找出对应的元素是关键. 全等三角形的判定方法: (1) 边角边定理(SAS):两边和它们的夹角对应相等的两个三角形全等. (2) 角边角定理(ASA):两角和它们的夹边对应相等的两个三角形全等. (3) 边边边定理(SSS):三边对应相等的两个三角形全等. (4) 角角边定理(AAS):两个角和其中一个角的对边对应相等的两个三角形全等. (5) 斜边、直角边定理(HL):斜边和一条直角边对应相等的两个直角三角形全等. 全等三角形的应用:运用三角形全等可以证明线段相等、角相等、两直线垂直等问题,在证明的过程中,注意有时会添加辅助线. 拓展关键点:能通过判定两个三角形全等进而证明两条线段间的位置关系和大小关系.而证明两条线段或两个角的和、差、倍、分相等是几何证明的基础. 全等三角形证明经典题 1已知:AB=4,AC=2,D是BC中点,AD是整数,求AD A D B C 2已知:BC=DE,∠B=∠E,∠C=∠D,F是CD中点,求证:∠1=∠2 A B C D E F 2 1 3已知:∠1=∠2,CD=DE,EF//AB,求证:EF=AC B A C D F 2 1 E 4已知:AD平分∠BAC,AC=AB+BD,求证:∠B=2∠C A C D B 5已知:AC平分∠BAD,CE⊥AB,∠B+∠D=180°,求证:AE=AD+BE 6 如图,四边形ABCD中,AB∥DC,BE、CE分别平分∠ABC、∠BCD,且点E在AD上。求证:BC=AB+DC。 7已知:AB=CD,∠A=∠D,求证:∠B=∠C A B C D 8 P是∠BAC平分线AD上一点,AC>AB,求证:PC-PB<AC-AB P D A C B 9已知,E是AB中点,AF=BD,BD=5,AC=7,求F A E D C B DC 10.(5分)如图,已知AD∥BC,∠PAB的平分线与∠CBA的平分线相交于E,CE的连线交AP于D.求证:AD+BC=AB. 11(6分)如图,△ABC中,AD是∠CAB的平分线,且AB=AC+CD,求证:∠C=2∠B 12(10分)如图:AE、BC交于点M,F点在AM上,BE∥CF,BE=CF。 求证:AM是△ABC的中线。 A C B D E F 13已知:如图,AB=AC,BD^AC,CE^AB,垂足分别为D、E,BD、CE相交于点F,求证:BE=CD. 14在△ABC中,,,直线经过点,且于,于.(1)当直线绕点旋转到图1的位置时,求证: ①≌;②; (2)当直线绕点旋转到图2的位置时,(1)中的结论还成立吗?若成立,请给出证明;若不成立,说明理由. 15如图所示,已知AE⊥AB,AF⊥AC,AE=AB,AF=AC。求证:(1)EC=BF;(2)EC⊥BF A E B M C F 16.如图,已知AC∥BD,EA、EB分别平分∠CAB和∠DBA,CD过点E,则AB与AC+BD相等吗?请说明理由 A B C D E F 图9 17.如图9所示,△ABC是等腰直角三角形,∠ACB=90°,AD是BC边上的中线,过C作AD的垂线,交AB于点E,交AD于点F,求证:∠ADC=∠BDE. 全等三角形证明经典(答案) 1. 延长AD到E,使DE=AD, 则三角形ADC全等于三角形EBD 即BE=AC=2 在三角形ABE中,AB-BE<AE<AB+BE 即:10-2<2AD<10+2 4<AD<6 又AD是整数,则AD=5 2证明:连接BF和EF。 因为 BC=ED,CF=DF,∠BCF=∠EDF。 所以 三角形BCF全等于三角形EDF(边角边)。 所以 BF=EF,∠CBF=∠DEF。 连接BE。 在三角形BEF中,BF=EF。 所以 ∠EBF=∠BEF。 又因为 ∠ABC=∠AED。 所以 ∠ABE=∠AEB。 所以 AB=AE。 在三角形ABF和三角形AEF中, AB=AE,BF=EF, ∠ABF=∠ABE+∠EBF=∠AEB+∠BEF=∠AEF。 所以 三角形ABF和三角形AEF全等。 所以 ∠BAF=∠EAF (∠1=∠2)。 3 证明: 过E点,作EG//AC,交AD延长线于G 则∠DEG=∠DCA,∠DGE=∠2 又∵CD=DE ∴⊿ADC≌⊿GDE(AAS) ∴EG=AC ∵EF//AB ∴∠DFE=∠1 ∵∠1=∠2 ∴∠DFE=∠DGE ∴EF=EG ∴EF=AC 4证明: 在AC上截取AE=AB,连接ED ∵AD平分∠BAC ∴∠EAD=∠BAD 又∵AE=AB,AD=AD ∴⊿AED≌⊿ABD(SAS) ∴∠AED=∠B,DE=DB ∵AC=AB+BD AC=AE+CE ∴CE=DE ∴∠C=∠EDC ∵∠AED=∠C+∠EDC=2∠C ∴∠B=2∠C 5证明: 在AE上取F,使EF=EB,连接CF 因为CE⊥AB 所以∠CEB=∠CEF=90° 因为EB=EF,CE=CE, 所以△CEB≌△CEF 所以∠B=∠CFE 因为∠B+∠D=180°,∠CFE+∠CFA=180° 所以∠D=∠CFA 因为AC平分∠BAD 所以∠DAC=∠FAC 又因为AC=AC 所以△ADC≌△AFC(SAS) 所以AD=AF 所以AE=AF+FE=AD+BE 6证明:在BC上截取BF=BA,连接EF. ∠ABE=∠FBE,BE=BE,则⊿ABE≌ΔFBE(SAS),∠EFB=∠A; AB平行于CD,则:∠A+∠D=180°; 又∠EFB+∠EFC=180°,则∠EFC=∠D; 又∠FCE=∠DCE,CE=CE,故⊿FCE≌ΔDCE(AAS),FC=CD. 所以,BC=BF+FC=AB+CD. 7证明:设线段AB,CD所在的直线交于E,(当AD<BC时,E点是射线BA,CD的交点,当AD>BC时,E点是射线AB,DC的交点)。 则: △AED是等腰三角形。 所以:AE=DE 而AB=CD 所以:BE=CE (等量加等量,或等量减等量) 所以:△BEC是等腰三角形 所以:角B=角C. 8作B关于AD的对称点B‘,因为AD是角BAC的平分线,B'在线段AC上(在AC中间,因为AB较短) 因为PC<PB’+B‘C,PC-PB’<B‘C,而B'C=AC-AB'=AC-AB,所以PC-PB<AC-ABP D A C B 9作AG∥BD交DE延长线于G AGE全等BDE AG=BD=5 AGF∽CDF AF=AG=5 所以DC=CF=2 10证明: 做BE的延长线,与AP相交于F点, ∵PA//BC ∴∠PAB+∠CBA=180°, 又∵,AE,BE均为∠PAB和∠CBA的角平分线 ∴∠EAB+∠EBA=90°∴∠AEB=90°,EAB为直角三角形 在三角形ABF中,AE⊥BF,且AE为∠FAB的角平分线 ∴三角形FAB为等腰三角形,AB=AF,BE=EF 在三角形DEF与三角形BEC中, ∠EBC=∠DFE,且BE=EF,∠DEF=∠CEB, ∴三角形DEF与三角形BEC为全等三角形,∴DF=BC ∴AB=AF=AD+DF=AD+BC 11证明:在AB上找点E,使AE=AC ∵AE=AC,∠EAD=∠CAD,AD=AD ∴△ADE≌△ADC。DE=CD,∠AED=∠C ∵AB=AC+CD,∴DE=CD=AB-AC=AB-AE=BE ∠B=∠EDB ∠C=∠B+∠EDB=2∠B 12证明: ∵BE‖CF ∴∠E=∠CFM,∠EBM=∠FCM ∵BE=CF ∴△BEM≌△CFM ∴BM=CM ∴AM是△ABC的中线. 13证明:因为 AB=AC, 所以 ∠EBC=∠DCB 因为 BD⊥AC,CE⊥AB 所以 ∠BEC=∠CDB BC=CB (公共边) 则有 三角形EBC全等于三角形DCB 所以 BE=CD 14 (1) 证明:∵∠ACB=90°, ∴∠ACD+∠BCE=90°, 而AD⊥MN于D,BE⊥MN于E, ∴∠ADC=∠CEB=90°,∠BCE+∠CBE=90°, ∴∠ACD=∠CBE. 在Rt△ADC和Rt△CEB中,{∠ADC=∠CEB∠ACD=∠CBE AC=CB, ∴Rt△ADC≌Rt△CEB(AAS), ∴AD=CE,DC=BE, ∴DE=DC+CE=BE+AD; (2)不成立,证明:在△ADC和△CEB中,{∠ADC=∠CEB=90°∠ACD=∠CBE AC=CB, ∴△ADC≌△CEB(AAS), ∴AD=CE,DC=BE, ∴DE=CE-CD=AD-BE; 15 (1) 证明;因为AE垂直AB 所以角EAB=角EAC+角CAB=90度 因为AF垂直AC 所以角CAF=角CAB+角BAF=90度 所以角EAC=角BAF 因为AE=AB AF=AC 所以三角形EAC和三角形FAB全等 所以EC=BF 角ECA=角F (2) 延长FB与EC的延长线交于点G 因为角ECA=角F(已证) 所以角G=角CAF 因为角CAF=90度 所以EC垂直BF 16在AB上取点N ,使得AN=AC ∠CAE=∠EAN ,AE为公共边,所以三角形CAE全等三角形EAN 所以∠ANE=∠ACE 又AC平行BD 所以∠ACE+∠BDE=180 而∠ANE+∠ENB=180 所以∠ENB=∠BDE ∠NBE=∠EBN BE为公共边, 所以三角形EBN全等三角形EBD 所以BD=BN 所以AB=AN+BN=AC+BD 17证明:作CG平分∠ACB交AD于G ∵∠ACB=90° ∴∠ACG= ∠DCG=45° ∵∠ACB=90° AC=BC ∴∠B=∠BAC=45° ∴∠B=∠DCG=∠ACG ∵CF⊥AD ∴∠ACF+∠DCF=90° ∵∠ACF+∠CAF=90° ∴∠CAF=∠DCF ∵ AC=CB ∠ACG=∠B ∴△ACG≌△CBE ∴CG=BE ∵∠DCG=∠B CD=BD ∴△CDG ≌△BDE ∴∠ADC=∠BDE 根保管员应经常了解设备情况,凡符合下列条件之一的备件,应及时处理,办理注销手续:因设备报废、设备技术改造或设备外调而导致不再需要的备件,要及时销售和处理做到尽可能回收资金,不随意浪费。因保管不善而造成的备件废品,且经管理员组织有关技术人员鉴定无修复价值的,要查明原因,提出防范措施和处理意见,批准后报废。 WORD完美格式 下载可编辑- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 全等 三角形 经典 题型 答案 解析
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【天****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【天****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【天****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【天****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文