高一数学等差数列前n项和典型例题.pptx
《高一数学等差数列前n项和典型例题.pptx》由会员分享,可在线阅读,更多相关《高一数学等差数列前n项和典型例题.pptx(56页珍藏版)》请在咨信网上搜索。
1、复习引入复习引入1.等差数列定义:等差数列定义:即即anan1 d(n2).2.等差数列通项公式:等差数列通项公式:(2)anam(nm)d.(3)anpnq(p、q是常数是常数)(1)ana1(n1)d(n1).复习引入复习引入3.几种计算公差几种计算公差d的方法的方法:复习引入复习引入4.等差中项等差中项成等差数列成等差数列.mnpq amanapaq.(m,n,p,qN)5.等差数列的性质等差数列的性质高斯是伟大的数学家,天文学家,高斯十岁时,高斯是伟大的数学家,天文学家,高斯十岁时,有一次老师出了一道题目,老师说有一次老师出了一道题目,老师说:“现在给大家现在给大家出道题目出道题目:1
2、+2+100=?”过了两分钟,正当大家过了两分钟,正当大家在:在:1+2=3;3+3=6;4+6=10算得不亦乐乎时,算得不亦乐乎时,高斯站起来回答说:高斯站起来回答说:“1+2+3+100=5050”教师问:教师问:“你是如何算出答案的?你是如何算出答案的?”高斯回答说:高斯回答说:“因为因为1+100=101;2+99=101;50+51=101,所以,所以10150=5050”.“倒序相加倒序相加”法法1+2+3+n=?解:记解:记Sn=1+2+3+n-2+n-1+n则有则有 Sn=n+n-1+n-2+3+2+1;对应相加得对应相加得:2Sn=(1+n)+(2+n-1)+(3+n-2)+
3、(n-1+2)+(n+1)=n(n+1)则则Sn=倒序相倒序相加法加法100层层怎么求呢?怎么求呢?先补先补想:探求三角形面积想:探求三角形面积后分后分变:变:“知三求二知三求二”【例【例1 1】已知等差数列】已知等差数列aan n.(1)a(1)a1 1=a=a1515=S=Sn n=-5,=-5,求求n n和和d;(2)ad;(2)a1 1=4,S=4,S8 8=172,=172,求求a a8 8和和d.d.【审题指导】【审题指导】根据等差数列前根据等差数列前n n项和公式解方程项和公式解方程.【规范解答】【规范解答】(1 1)aa1515=+(15-1)d=+(15-1)d=d=d=又又
4、S Sn n=na=na1 1+d=-5,d=-5,解得解得n=15,n=-4n=15,n=-4(舍)(舍).(2 2)由已知,得)由已知,得S S8 8=解得解得a a8 8=39,=39,又又aa8 8=4+(8-1)d=39,d=5.=4+(8-1)d=39,d=5.【变式训练】在等差数列【变式训练】在等差数列aan n 中,已知中,已知a a6 6=10=10,S S5 5=5=5,求,求a a8 8.【解析】【解析】方法一:设公差为方法一:设公差为d,d,aa6 6=10=10,S S5 5=5=5,解得解得 a a8 8=a=a6 6+2d=16.+2d=16.方法二:设公差为方法
5、二:设公差为d,d,SS6 6=S=S5 5+a+a6 6=15=15,15=15=即即3 3(a a1 1+10+10)=15.=15.aa1 1=-5=-5,d=3.ad=3.a8 8=a=a1 1+(8-18-1)d=16.d=16.【例例2 2】S Sn n是等差数列是等差数列aan n 的前的前n n项和,且项和,且S S1010=100=100,S S100100=10=10,求求S S110110.【审题指导审题指导】题目给出等差数列题目给出等差数列aan n 中的中的S S1010=100=100,S S100100=10=10,欲求欲求S S110110,可由等差数列前,可由
6、等差数列前n n项和公式列出方程组,求出项和公式列出方程组,求出a a1 1和和d d,然后求出,然后求出S S110110.或由等差数列或由等差数列“片段和片段和”性质性质S Sk k,S S2k2k-S-Sk k,S S3k3k-S-S2k2k,S Smkmk-S-S(m-1m-1)k k,构成公差为构成公差为k k2 2d d的等差数列求出的等差数列求出公差,然后求出公差,然后求出S S110110.【规范解答】【规范解答】方法一方法一:设等差数列设等差数列aan n 的公差为的公差为d,d,前前n n项和项和为为S Sn n,则则S Sn n=na=na1 1+由已知得由已知得10-,
7、10-,整理得整理得d=d=代入代入,得得a a1 1=SS110110=110a=110a1 1+=-110.+=-110.故此数列的前故此数列的前110110项之和为项之和为-110.-110.方法二:设方法二:设Sn=AnSn=An2 2+Bn+Bn100A+10B=100100A+10B=10010000A+100B=1010000A+100B=10,解得,解得A=-11/100A=-11/100,B=111/10B=111/10,S S110110=-110=-110方法四方法四:数列数列S S1010,S,S2020-S-S1010,S,S3030-S-S2020,S,S10010
8、0-S-S9090,S,S110110-S-S100100成等差成等差数列数列,设其公差为设其公差为D,D,前前1010项和为项和为10S10S1010+D=SD=S100100=10=10 D=-22,S D=-22,S110110-S-S100100=S=S1010+(11-1)D+(11-1)D=100+10(-22)=-120.=100+10(-22)=-120.SS110110=-120+S=-120+S100100=-110.=-110.方法三方法三:Sn=Sn=练习:练习:1 1、等差数列、等差数列anan的前的前n n项和为项和为SnSn,已知,已知S8=132S8=132,S
9、m=690Sm=690,Sm-8=270Sm-8=270(m m8 8),则),则m m为()为()2 2、等差数列、等差数列 a ann的前的前m m项和为项和为3030,前,前2m2m项和为项和为100100,前,前3m3m项和为(项和为(210210)知识点:等差数列前知识点:等差数列前n n项和的性质的应用项和的性质的应用(1)(1)项数(下标)的项数(下标)的“等和等和”性质:性质:S Sn n=(2)(2)项的个数的项的个数的“奇偶奇偶”性质:性质:等差数列等差数列aan n 中,公差为中,公差为d d:若共有若共有2n2n项,则项,则S S2n2n=n=n(a an n+a+an
10、+1n+1););S S偶偶-S-S奇奇=nd=nd;S S偶偶SS奇奇=a=an+1n+1aan n;若共有若共有2n+12n+1项,则项,则S S2n+12n+1=(2n+12n+1)a an+1n+1;S S偶偶-S-S奇奇=-a=-an+1n+1;S S偶偶S S奇奇=n=n(n+1n+1););“片段和片段和”性质:性质:等差数列等差数列aan n 中,公差为中,公差为d d,前,前k k项的和为项的和为S Sk k,则,则S Sk k,S S2k2k-S-Sk k,S S3k3k-S-S2k2k,S Smkmk-S-S(m-1m-1)k k,构成公差为构成公差为k k2 2d d的
11、等差数列的等差数列.【变式【变式1 1】等差数列】等差数列aan n 中,中,a a2 2+a+a7 7+a+a1212=24=24,求,求S S1313.【解题提示解题提示】利用等差数列的性质利用等差数列的性质S Sn n=【解析】【解析】因为因为a a1 1+a+a1313=a=a2 2+a+a1212=2a=2a7 7,又,又a a2 2+a+a7 7+a+a1212=24=24,所以,所以a a7 7=8=8,所以,所以S S1313=138=104.=138=104.【变式【变式2 2】已知等差数列】已知等差数列aan n 的前的前4 4项和为项和为2525,后,后4 4项和为项和为
12、6363,前,前n n项和项和为为286286,求项数,求项数n.n.【审题指导】【审题指导】题目给出前题目给出前4 4项和与后项和与后4 4项和,可利用等差数项和,可利用等差数列项数(下标)的列项数(下标)的“等和等和”性质:性质:S Sn n=来求得来求得.【规范解答】【规范解答】因为因为a a1 1+a+a2 2+a+a3 3+a+a4 4=25=25,a an-3n-3+a+an-2n-2+a+an-1n-1+a+an n=63.=63.而而a a1 1+a+an n=a=a2 2+a+an-1n-1=a=a3 3+a+an-2n-2=a=a4 4+a+an-3n-3,所以所以4 4(
13、a a1 1+a+an n)=88=88,所以,所以a a1 1+a+an n=22=22,所以所以S Sn n=11n=286=11n=286,所以,所以n=26.n=26.故所求的项数为故所求的项数为26.26.【奇数项偶数项题组】第二课时【奇数项偶数项题组】第二课时例例4:4:等差数列等差数列anan中中(1)(1)共有共有1010项,其奇数项之和为项,其奇数项之和为1515,偶数项之和为,偶数项之和为3030,求公,求公差差d d;(2)(2)前前1212项之和为项之和为354354,前,前1212项中偶数项和与奇数项和之比项中偶数项和与奇数项和之比为为32:2732:27,求公差,求
14、公差d d(3)(3)前前n n项和为项和为377377,项数,项数n n为奇为奇数,且前数,且前n n项和中奇数项和与项和中奇数项和与偶数项和之比为偶数项和之比为7676,求中间项,求中间项.(4)(4)项数为项数为2n+12n+1,若所有奇数项的和为,若所有奇数项的和为165165,偶数项和为,偶数项和为150150,求,求n n(5)S(5)S100100=45=45,d=1/2d=1/2,求,求a a1 1+a+a3 3+a+a5 5+a+a9999【3 3】已知等差数列】已知等差数列aan n 的前的前n n项和为项和为377377,项数,项数n n为奇为奇数,且前数,且前n n项和
15、中奇数项和与偶数项和之比为项和中奇数项和与偶数项和之比为7676,求中间项,求中间项.【解题提示】【解题提示】在等差数列在等差数列aan n 中,若共有中,若共有2n+12n+1项,项,则则S S2n+12n+1=(2n+12n+1)a an+1n+1;S S偶偶SS奇奇=n=n(n+1n+1).【解析】【解析】因为因为n n为奇数,所以为奇数,所以 所以所以n=13n=13,所以,所以1313a a7 7=S=S1313=377=377,所以,所以a a7 7=29=29,故所求的中间项为故所求的中间项为29.29.第三课时第三课时【最值问题】【最值问题】【典例】(【典例】(1212分)在等
16、差数列分)在等差数列aan n 中,中,a a1 1=25=25,S S1717=S=S9 9,求,求S Sn n的最大值的最大值.【审题指导】【审题指导】题目给出首项和题目给出首项和S S1717=S=S9 9等条件,欲求等条件,欲求S Sn n的最大值可转化的最大值可转化为二次函数求最值,或利用通项公式为二次函数求最值,或利用通项公式a an n求求n n使得使得a an n0,a0,an+1n+10 0或利用或利用性质求出大于或等于零的项性质求出大于或等于零的项.【规范解答】【规范解答】方法一:设公差为方法一:设公差为d,d,由由S S1717=S=S9 9得得2517+=25 2517
17、+=25 3 3分分解得解得d=-2d=-2,6 6分分SSn n=25n+=25n+(-2-2)=-=-(n-13n-13)2 2+169+169,9 9分分由二次函数性质得,当由二次函数性质得,当n=13n=13时,时,S Sn n有最大值有最大值169.169.1212分分方法二:先求出公差方法二:先求出公差d=-2d=-2(同方法一),(同方法一),6 6分分aa1 1=25=250,0,故故aan n 为递减数列,由为递减数列,由 得得 解得解得 9 9分分即即 又又nNnN*当当n=13n=13时,时,S Sn n有最大值有最大值S S1313=1325+=1325+(-2-2)=
18、169.=169.1212分分方法三:先求出公差方法三:先求出公差d=-2d=-2(同方法一),(同方法一),6 6分分由由S S1717=S=S9 9,得,得a a1010+a+a1111+a+a1717=0=0,而而a a1010+a+a1717=a=a1111+a+a1616=a=a1212+a+a1515=a=a1313+a+a1414,故故a a1313+a+a1414=0 =0 9 9分分d=-2d=-20,a0,a1 10,a0,a13130,a0,a14140.0.故故n=13n=13时,时,S Sn n有最大值有最大值169.169.1212分分【误区警示误区警示】对解答本题
19、时易犯错误的具体分析如下:对解答本题时易犯错误的具体分析如下:【即时训练即时训练】在等差数列在等差数列aan n 中,中,a a1 1=50=50,d=-0.6.d=-0.6.(1 1)从第几项起以后各项均小于零?)从第几项起以后各项均小于零?(2 2)求此数列前)求此数列前n n项和的最大值项和的最大值.【解题提示解题提示】()实质上是解一个不等式,但要注意()实质上是解一个不等式,但要注意为正整数;()转化为求二次函数的最大值的问题为正整数;()转化为求二次函数的最大值的问题【解析解析】(1 1)a a1 1=50=50,d=-0.6,d=-0.6,aan n=50-0.6=50-0.6(
20、n-1n-1)=-0.6n+50.6.=-0.6n+50.6.令令-0.6n+50.60-0.6n+50.60,则,则n 84.3.n 84.3.由由nNnN*,故当故当n85n85时,时,a an n0 0,即从第,即从第8585项起以后各项均小于项起以后各项均小于0.0.(2)(2)方法一:方法一:a a1 1=50=500 0,d=-0.6d=-0.60 0,由(由(1 1)知)知a a84840 0,a a85850 0,S S1 1S S2 2S S3 3S S8484,且,且S S8484S S8585S S8686.(S Sn n)maxmax=S=S8484=5084+=508
21、4+(-0.6-0.6)=2 108.4.=2 108.4.方法二:方法二:S Sn n=50n+=50n+(-0.6-0.6)=-0.3n=-0.3n2 2+50.3n+50.3n=-0.3=-0.3(n-n-)2 2+当当n n取最接近于取最接近于 的自然数,即的自然数,即n=84n=84时,时,S Sn n取得最大值取得最大值S S8484=2 108.4.=2 108.4.【最值问题题组】【最值问题题组】等差数列等差数列an中中(1)a10,a2003+a20040,a2003a20040成立的最大自然数成立的最大自然数n是(是()(2)若若S190,S200,则,则S1a1,S2a2
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数学 等差数列 典型 例题
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【快乐****生活】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【快乐****生活】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。