点到直线的距离两条平行线间的距离的教学设计.doc
《点到直线的距离两条平行线间的距离的教学设计.doc》由会员分享,可在线阅读,更多相关《点到直线的距离两条平行线间的距离的教学设计.doc(4页珍藏版)》请在咨信网上搜索。
3.3.3点到直线的距离 3.3.4两条平行线间的距离的教学设计(3课时) 主备教师:谢太正 一、内容及其解析 点到直线的距离和两条平行线间的距离是高中课本必修2第三章直线的最后一节,其主要内容是:点到直线的距离和平行线间的距离的公式的推导及应用。在此之前,学生已经学习了两点间的距离公式、直线方程、两直线的位置关系。点到直线的距离公式是解决理论和实际问题的重要工具,它使学生对点与直线的位置关系的认识从定性的认识上升到定量的认识。点到直线的距离公式可用于研究曲线的性质如求两条平行线间的距离,求三角形的高,求圆心到直线的距离等等,借助它也可以求点的轨迹方程,如角平分线的方程,抛物线的方程等等。 二、目标及其解析 目标:1、掌握点到直线的距离公式及其推导; 2、会求两平行线间的距离。 解析:1、点到直线的距离 2、两条平行直线间的距离是指夹在两条平行直线间公垂线段的长度,如果我们知道两条平行线直线和的一般式方程为:,:,则与的距离为 三、问题诊断与分析 学生已掌握直线的方程和平面上两点间的距离公式,具备了探讨新问题的一定的基础知识,但大部分学生基础较差,很难理解,还需要补充大量的练习。 四、教学设计 (一)复习准备: (1)直线方程的一般形式:Ax+By+C=0(A,B不全为0)。 (2)平面上两点P1 (x1,y1),P2 (x2,y2)间的距离公式 (3)三角形的面积公式。 (二)探究:点到直线的距离公式 问题一:已知P (x0,y0),直线l:Ax + By + C = 0,怎样用点的坐标和直线的方程直接求点到直线的距离呢? 过程:方案一:设点P到直线l的垂线段为PQ,垂足为Q,由PQ⊥l可知,直线PQ的斜率为(A≠0),根据点斜式写出直线PQ的方程,并由l与PQ的方程求出点Q的坐标:由此根据两点距离公式求出|PQ|,得到点P到直线l的距离为d. 方案二:设A≠0,B≠0,这时l与x轴、y轴都相交,过点P作x轴的平行线,交l于点 ;作y轴的平行线,交l于点, 由 得 所以 由三角形面积公式可知d·|RS|=|PR|·|PS|. 所以 可证明,当A = 0时仍适用. 追问:在应用此公式时对直线方程有什么要求? 说明:必须是方程的一般式。 (三)点到直线的距离公式的应用. 例1:课本P107例5 例2:课本P107例6 变式训练:求过点M(–2,1)且与A(–1,2),B(3,0)两点距离相等的直线的方程. 解法一:当直线斜率不存在时,直线为x = –2,它到A、B两点距离不相等. 所以可设直线方程为:y – 1 = k(x + 2)即kx – y + 2k + 1 = 0. 由, 解得k = 0或. 故所求的直线方程为y – 1 = 0或x + 2y = 0. 解法二:由平面几何知识:l∥AB或l过AB的中点. 若l∥AB且,则l的方程为x + 2y = 0. 若l过AB的中点N(1,1)则直线的方程为y = 1. 所以所求直线方程为y – 1 = 0或x + 2y = 0. (四)探究:两条平行线间的距离 问题二:两条平行直线间的距离是指夹在两条平行直线间公垂线段的长度,如果我们知道两条平行线直线和的一般式方程为:,: 如何把两平行直线间距离转化为点到直线的距离? 解:设P0 (x0,y0)是直线Ax + By + C2 = 0上任一点,则点P0到直线Ax + By + C1 = 0的距离为 又Ax0 + By0 + C2 = 0 即Ax0 + By0= –C2, ∴ 追问:使用此公式的前提条件是什么?一是直线必须是一般式;二是两直线中x,y的系数必须相同。 (五)两条平行线间的距离应用 例3:课本P108例7 变式训练:求两平行线l1:2x + 3y – 8 = 0,l2:2x + 3y – 10 =0的距离. 解法一:在直线l1上取一点P(4,0),因为l1∥l2,所以P到l2的距离等于l1与l2的距离,于是 解法二:直接由公式 练习:已知一直线被两平行线3x + 4y – 7 = 0与3x + 4y + 8 = 0所截线段长为3,且该直线过点(2,3),求该直线方程. 五、课堂小结: 1. 点到直线的距离=__________________. 2.两条平行直线与的距离是______________. 六、目标检测设计 1.在的距离等于5的点的坐标是______________. 2.两平行线的距离是_____________________. 3.若,,,则△ABC中BC边上的中线AD的长为_______________. 七、配餐作业 A组 1. 已知,则点到直线的距离为( ) A. B. C. D. 2. 若直线垂直于3x+4y-7=0且与原点的距离为6,则该直线方程为__________. 3. 倾角为45°,且与原点距离为5的直线方程是________________________. 4.已知x轴上一点P到直线3x+4y-6=0的距离为4,则P点坐标为________. 5.已知点A(,6)到直线3-4=2的距离d=4,求的值. B组 6.求与两条平行直线的距离相等的直线方程。 7.已知一直线被两平行线3x+4y-7=0与3x+4y+8=0所截线段长为3.且该直线过点(2,3),求该直线方程。 C组 8.已知,,在y轴上求一点P,使|PA|=2|PB|. 4 / 4- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 直线 距离 平行线 教学 设计
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【快乐****生活】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【快乐****生活】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【快乐****生活】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【快乐****生活】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文