浙教版八年级下数学第五章《特殊平行四边形》中考试题(解答题)——顾家栋.doc
《浙教版八年级下数学第五章《特殊平行四边形》中考试题(解答题)——顾家栋.doc》由会员分享,可在线阅读,更多相关《浙教版八年级下数学第五章《特殊平行四边形》中考试题(解答题)——顾家栋.doc(12页珍藏版)》请在咨信网上搜索。
浙教版八年级下数学第五章《特殊平行四边形》中考试题——顾家栋 解答题 题型:解答题 .(2014 四川巴中 中考)如图,在四边形ABCD中,点H是BC的中点,作射线AH,在线段AH及其延长线上分别取点E,F,连结BE,CF. (1)请你添加一个条件,使得△BEH≌△CFH,你添加的条件是 ,并证明. (2)在问题(1)中,当BH与EH满足什么关系时,四边形BFCE是矩形,请说明理由. 答案:(1)EH=FH (2)BH=EH 方法技巧:(1)根据全等三角形的判定方法,可得出当EH=FH,BE∥CF,∠EBH=∠FCH时,都可以证明△BEH≌△CFH, (2)由(1)可得出四边形BFCE是平行四边形,再根据对角线相等的平行四边形为矩形可得出BH=EH时,四边形BFCE是矩形. 解析:(1)答:添加:EH=FH,证明:∵点H是BC的中点,∴BH=CH, 在△BEH和△CFH中,, ∴△BEH≌△CFH(SAS); (2)解:∵BH=CH,EH=FH, ∴四边形BFCE是平行四边形(对角线互相平分的四边形为平行四边形) ∵当BH=EH时,则BC=EF, ∴平行四边形BFCE为矩形(对角线相等的平行四边形为矩形). 知识点:矩形的判定. 题目难度:普通 题目分值:6分 .(2014 山东威海 中考) 猜想与证明: 如图1摆放矩形纸片ABCD与矩形纸片ECGF,使B、C、G三点在一条直线上,CE在边CD上,连接AF,若M为AF的中点,连接DM、ME,试猜想DM与ME的关系,并证明你的结论. 拓展与延伸: (1)若将”猜想与证明“中的纸片换成正方形纸片ABCD与正方形纸片ECGF,其他条件不变,则DM和ME的关系为. (2)如图2摆放正方形纸片ABCD与正方形纸片ECGF,使点F在边CD上,点M仍为AF的中点,试证明(1)中的结论仍然成立. 答案:(1)DM=DE (2)证明见解析 方法技巧:猜想:延长EM交AD于点H,利用△FME≌△AMH,得出HM=EM,再利用直角三角形中,斜边的中线等于斜边的一半证明. (1)延长EM交AD于点H,利用△FME≌△AMH,得出HM=EM,再利用直角三角形中,斜边的中线等于斜边的一半证明, (2)连接AE,AE和EC在同一条直线上,再利用直角三角形中,斜边的中线等于斜边的一半证明. 解析:(1)猜想:DM=ME 如图1,延长EM交AD于点H, ∵四边形ABCD和CEFG是矩形, ∴AD∥EF, ∴∠EFM=∠HAM, 又∵∠FME=∠AMH,FM=AM, 在△FME和△AMH中, ∴△FME≌△AMH(ASA) ∴HM=EM, 在Rt△HDE中,HM=EM, ∴DM=HM=ME, ∴DM=ME, 故答案为:DM=ME. (2)如图2,连接AE, ∵四边形ABCD和ECGF是正方形, ∴∠FCE=45°,∠FCA=45°, ∴AE和EC在同一条直线上, 在RT△ADF中,AM=MF, ∴DM=AM=MF, 在RT△AEF中,AM=MF, ∴AM=MF=ME, ∴DM=ME.. 知识点:四边形综合题. 题目难度:较难 题目分值:11分 .(2014 湖北咸宁 中考)如图,正方形OABC的边OA,OC在坐标轴上,点B的坐标为(-4,4).点P从点A出发,以每秒1个单位长度的速度沿x轴向点O运动;点Q从点O同时出发,以相同的速度沿x轴的正方向运动,规定点P到达点O时,点Q也停止运动.连接BP,过P点作BP的垂线,与过点Q平行于y轴的直线l相交于点D.BD与y轴交于点E,连接PE.设点P运动的时间为t(s). (1)∠PBD的度数为_______,点D的坐标为_______(用t表示); (2)当t为何值时,△PBE为等腰三角形? (3)探索△POE周长是否随时间t的变化而变化?若变化,说明理由;若不变,试求这个定值. 答案:(1)45° ,(t,t)(2)t为4秒或(4-4)秒 (3)不变,周长为8 方法技巧:(1)易证△BAP≌△PQD,从而得到DQ=AP=t,从而可以求出∠PBD的度数和点D的坐标. (2)由于∠EBP=45°,故图1是以正方形为背景的一个基本图形,容易得到EP=AP+CE.由于△PBE底边不定,故分三种情况讨论,借助于三角形全等及勾股定理进行求解,然后结合条件进行取舍,最终确定符合要求的t值. (3)由(2)已证的结论EP=AP+CE很容易得到△POE周长等于AO+CO=8,从而解决问题. 解析:解:(1)如图1, 由题可得:AP=OQ=1×t=t(秒) ∴AO=PQ. ∵四边形OABC是正方形, ∴AO=AB=BC=OC, ∠BAO=∠AOC=∠OCB=∠ABC=90°. ∵DP⊥BP, ∴∠BPD=90°. ∴∠BPA=90°-∠DPQ=∠PDQ. ∵AO=PQ,AO=AB, ∴AB=PQ. 在△BAP和△PQD中, ∴△BAP≌△PQD. ∴AP=DQ,BP=PD. ∵∠BPD=90°,BP=PD, ∴∠PBD=∠PDB=45°. ∵AP=t, ∴DQ=t. ∴点D坐标为(t,t). 故答案为:45°,(t,t). (2)①若PB=PE, 则∠PBE=∠PEB=45°. ∴∠BPE=90°. ∵∠BPD=90°, ∴∠BPE=∠BPD. ∴点E与点D重合. ∴点Q与点O重合. 与条件“DQ∥y轴”矛盾, ∴这种情况应舍去. ②若EB=EP, 则∠PBE=∠BPE=45°. ∴∠BEP=90°. ∴∠PEO=90°-∠BEC=∠EBC. 在△POE和△ECB中, ∴△POE≌△ECB. ∴OE=BC,OP=EC. ∴OE=OC. ∴点E与点C重合(EC=0). ∴点P与点O重合(PO=0). ∵点B(-4,4), ∴AO=CO=4. 此时t=AP=AO=4. ③若BP=BE, 在Rt△BAP和Rt△BCE中, ∴Rt△BAP≌Rt△BCE(HL). ∴AP=CE. ∵AP=t, ∴CE=t. ∴PO=EO=4-t. ∵∠POE=90°, ∴PE==(4-t). 延长OA到点F,使得AF=CE,连接BF,如图2所示. 在△FAB和△ECB中, ∴△FAB≌△ECB. ∴FB=EB,∠FBA=∠EBC. ∵∠EBP=45°,∠ABC=90°, ∴∠ABP+∠EBC=45°. ∴∠FBP=∠FBA+∠ABP=∠EBC+∠ABP=45°. ∴∠FBP=∠EBP. 在△FBP和△EBP中, ∴△FBP≌△EBP. ∴FP=EP. ∴EP=FP=FA+AP=CE+AP. ∴EP=t+t=2t. ∴(4-t)=2t. 解得:t=4-4 ∴当t为4秒或(4-4)秒时,△PBE为等腰三角形. (3)∵EP=CE+AP, ∴OP+PE+OE=OP+AP+CE+OE=AO+CO=4+4=8. ∴△POE周长是定值,该定值为8. 知识点:四边形综合题;解一元一次方程;全等三角形的判定与性质;等腰三角形的性质;勾股定理;正方形的性质. 题目难度:较难 题目分值:12分 .(2014 山东临沂 中考) 对一张矩形纸片ABCD进行折叠,具体操作如下: 第一步:先对折,使AD与BC重合,得到折痕MN,展开; 第二步:再一次折叠,使点A落在MN上的点A′处,并使折痕经过点B,得到折痕BE,同时,得到线段BA′,EA′,展开,如图1; 第三步:再沿EA′所在的直线折叠,点B落在AD上的点B′处,得到折痕EF,同时得到线段B′F,展开,如图2. (1)证明:∠ABE=30°; (2)证明:四边形BFB′E为菱形. 答案:见解析 方法技巧:(1)根据点M是AB的中点判断出A′是EF的中点,然后判断出BA′垂直平分EF,根据线段垂直平分线上的点到两端点的距离相等可得BE=BF,再根据等腰三角形三线合一的性质可得∠A′BE=∠A′BF,根据翻折的性质可得∠ABE=∠A′BE,然后根据矩形的四个角都是直角计算即可得证; (2)根据翻折变换的性质可得BE=B′E,BF=B′F,然后求出BE=B′E=B′F=BF,再根据四条边都相等的四边形是菱形证明. 解析:证明:(1)∵对折AD与BC重合,折痕是MN, ∴点M是AB的中点, ∴A′是EF的中点, ∵∠BA′E=∠A=90°, ∴BA′垂直平分EF, ∴BE=BF, ∴∠A′BE=∠A′BF, 由翻折的性质,∠ABE=∠A′BE, ∴∠ABE=∠A′BE=∠A′BF, ∴∠ABE=×90°=30°; (2)∵沿EA′所在的直线折叠,点B落在AD上的点B′处, ∴BE=B′E,BF=B′F, ∵BE=BF, ∴BE=B′E=B′F=BF, ∴四边形BFB′E为菱形. 知识点:翻折变换(折叠问题);菱形的判定;矩形的性质. 题目难度:普通 题目分值:9分 .(2014 四川遂宁 中考)已知:如图,在矩形ABCD中,对角线AC、BD相交于点O,E是CD中点,连结OE.过点C作CF∥BD交线段OE的延长线于点F,连结DF.求证: (1)△ODE≌△FCE; (2)四边形ODFC是菱形. 答案:见解析 方法技巧:(1)根据两直线平行,内错角相等可得∠DOE=∠CFE,根据线段中点的定义可得CE=DE,然后利用“角边角”证明△ODE和△FCE全等; (2)根据全等三角形对应边相等可得OD=FC,再根据一组对边平行且相等的四边形是平行四边形判断出四边形ODFC是平行四边形,根据矩形的对角线互相平分且相等可得OC=OD,然后根据邻边相等的平行四边形是菱形证明即可. 解析:证明:(1)∵CF∥BD, ∴∠DOE=∠CFE, ∵E是CD中点, ∴CE=DE, 在△ODE和△FCE中, ∴△ODE≌△FCE(ASA); (2)∵△ODE≌△FCE, ∴OD=FC, ∵CF∥BD, ∴四边形ODFC是平行四边形, 在矩形ABCD中,OC=OD, ∴四边形ODFC是菱形. 知识点:矩形的性质;全等三角形的判定与性质;菱形的判定. 题目难度:普通 题目分值:9分 .(2014 甘肃白银 中考)D、E分别是不等边三角形ABC(即AB≠BC≠AC)的边AB、AC的中点.O是△ABC所在平面上的动点,连接OB、OC,点G、F分别是OB、OC的中点,顺次连接点D、G、F、E. (1)如图,当点O在△ABC的内部时,求证:四边形DGFE是平行四边形; (2)若四边形DGFE是菱形,则OA与BC应满足怎样的数量关系?(直接写出答案,不需要说明理由.) 答案:见解析 方法技巧:(1)根据三角形的中位线平行于第三边并且等于第三边的一半可得DE∥BC且DE=BC,GF∥BC且GF=BC,从而得到DE∥GF,DE=GF,再利用一组对边平行且相等的四边形是平行四边形证明即可; (2)根据邻边相等的平行四边形是菱形解答. 解析:(1)证明:∵D、E分别是AB、AC边的中点, ∴DE∥BC,且DE=BC, 同理,GF∥BC,且GF=BC, ∴DE∥GF且DE=GF, ∴四边形DEFG是平行四边形; (2)解:当OA=BC时,平行四边形DEFG是菱形. 知识点:三角形中位线定理;平行四边形的判定;菱形的判定. 题目难度:普通 题目分值:10分 .(2014 福建厦门 中考)如图,在四边形ABCD中,AD∥BC,AM⊥BC,垂足为M,AN⊥DC,垂足为N,若∠BAD=∠BCD,AM=AN,求证:四边形ABCD是菱形. 答案:见解析 方法技巧:首先证明∠B=∠D,可得四边形ABCD是平行四边形,然后再证明△ABM≌△ADN可得AB=AD,再根据菱形的判定定理可得结论. 解析:证明:∵AD∥BC, ∴∠B+∠BAD=180°,∠D+∠C=180°, ∵∠BAD=∠BCD, ∴∠B=∠D, ∴四边形ABCD是平行四边形, ∵AM⊥BC,AN⊥DC, ∴∠AMB=∠AND=90°, 在△ABM和△ADN中, ∴△ABM≌△ADN(AAS), ∴AB=AD, ∴四边形ABCD是菱形 知识点:菱形的判定. 题目难度:普通 题目分值:6分 .(2014 四川雅安 中考)如图:在□ABCD中,AC为其对角线,过点D作AC的平行线与BC的延长线交于E. (1)求证:△ABC≌△DCE; (2)若AC=BC,求证:四边形ACED为菱形. 答案: 方法技巧:(1)利用AAS判定两三角形全等即可; (2)首先证得四边形ACED为平行四边形,然后证得AC=CE,利用邻边相等的平行四边形是菱形判定即可. 解析:证明:(1)∵四边形ABCD为平行四边形, ∴AB∥CD,AB=CD, ∴∠B=∠DCE, 又∵DE∥AC ∴∠ACB=∠E, 在△ABC与△DCE中, ∴△ABC≌△DCE; (2)∵平行四边形ABCD中, ∴AD∥BC, 即AD∥CE, 由DE∥AC, ∴四边形ACED为平行四边形, ∵△ABC≌△DCE, ∴BC=CE, 又∵AC=BC, ∴AC=CE, ∴四边形ACED为菱形. 知识点:菱形的判定;全等三角形的判定与性质;平行四边形的性质.. 题目难度:普通 题目分值:9分 .(2014 江苏淮安 中考)如图,在三角形纸片ABC中,AD平分∠BAC,将△ABC折叠,使点A与点D重合,展开后折痕分别交AB、AC于点E、F,连接DE、DF.求证:四边形AEDF是菱形. 答案:见解析 方法技巧:由∠BAD=∠CAD,AO=AO,∠AOE=∠AOF=90°证△AEO≌△AFO,推出EO=FO,得出平行四边形AEDF,根据EF⊥AD得出菱形AEDF. 解析:证明:∵AD平分∠BAC ∴∠BAD=∠CAD 又∵EF⊥AD, ∴∠AOE=∠AOF=90° ∵在△AEO和△AFO中 ∴△AEO≌△AFO(ASA), ∴EO=FO 即EF、AD相互平分, ∴四边形AEDF是平行四边形 又EF⊥AD, ∴平行四边形AEDF为菱形. 知识点:菱形的判定;翻折变换(折叠问题). 题目难度:普通 题目分值:8分 .(2014 贵州贵阳 中考)如图,在Rt△ABC中,∠ACB=90°,D、E分别为AB,AC边上的中点,连接DE,将△ADE绕点E旋转180°得到△CFE,连接AF,AC. (1)求证:四边形ADCF是菱形; (2)若BC=8,AC=6,求四边形ABCF的周长. 答案:见解析 方法技巧:(1)根据旋转可得AE=CE,DE=EF,可判定四边形ADCF是平行四边形,然后证明DF⊥AC,可得四边形ADCF是菱形; (2)首先利用勾股定理可得AB长,再根据中点定义可得AD=5,根据菱形的性质可得AF=FC=AD=5,进而可得答案. 解析:(1)证明:∵将△ADE绕点E旋转180°得到△CFE, ∴AE=CE,DE=EF, ∴四边形ADCF是平行四边形, ∵D、E分别为AB,AC边上的中点, ∴DE是△ABC的中位线, ∴DE∥BC, ∵∠ACB=90°, ∴∠AED=90°, ∴DF⊥AC, ∴四边形ADCF是菱形; (2)解:在Rt△ABC中,BC=8,AC=6, ∴AB=10, ∵D是AB边上的中点, ∴AD=5, ∵四边形ADCF是菱形, ∴AF=FC=AD=5, ∴四边形ABCF的周长为8+10+5+5=28. 知识点:菱形的判定与性质;旋转的性质. 题目难度:普通 题目分值:10分 12- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 特殊平行四边形 浙教版八 年级 数学 第五 特殊 平行四边形 中考 试题 解答 顾家
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【快乐****生活】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【快乐****生活】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【快乐****生活】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【快乐****生活】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文