挑战中考数学压轴题全套).doc
《挑战中考数学压轴题全套).doc》由会员分享,可在线阅读,更多相关《挑战中考数学压轴题全套).doc(42页珍藏版)》请在咨信网上搜索。
1、第一部分 函数图象中点的存在性问题11因动点产生的相似三角形问题 12因动点产生的等腰三角形问题 13因动点产生的直角三角形问题 14因动点产生的平行四边形问题15因动点产生的面积问题16因动点产生的相切问题17因动点产生的线段和差问题第二部分 图形运动中的函数关系问题21由比例线段产生的函数关系问题第三部分 图形运动中的计算说理问题31代数计算及通过代数计算进行说理问题32几何证明及通过几何计算进行说理问题第四部分 图形的平移、翻折与旋转41图形的平移42图形的翻折43图形的旋转44三角形45四边形46圆47函数的图象及性质11 因动点产生的相似三角形问题课前导学相似三角形的判定定理有3个,
2、其中判定定理1和判定定理2都有对应角相等的条件,因此探求两个三角形相似的动态问题,一般情况下首先寻找一组对应角相等判定定理2是最常用的解题依据,一般分三步:寻找一组等角,分两种情况列比例方程,解方程并检验如果已知AD,探求ABC与DEF相似,只要把夹A和D的两边表示出来,按照对应边成比例,分和两种情况列方程应用判定定理1解题,先寻找一组等角,再分两种情况讨论另外两组对应角相等应用判定定理3解题不多见,根据三边对应成比例列连比式解方程(组)还有一种情况,讨论两个直角三角形相似,如果一组锐角相等,其中一个直角三角形的锐角三角比是确定的,那么就转化为讨论另一个三角形是直角三角形的问题求线段的长,要用
3、到两点间的距离公式,而这个公式容易记错理解记忆比较好如图1,如果已知A、B两点的坐标,怎样求A、B两点间的距离呢?我们以AB为斜边构造直角三角形,直角边与坐标轴平行,这样用勾股定理就可以求斜边AB的长了水平距离BC的长就是A、B两点间的水平距离,等于A、B两点的横坐标相减;竖直距离AC就是A、B两点间的竖直距离,等于A、B两点的纵坐标相减图1 图1 图2例 1 湖南省衡阳市中考第28题二次函数yax2bxc(a0)的图象与x轴交于A(3, 0)、B(1, 0)两点,与y轴交于点C(0,3m)(m0),顶点为D(1)求该二次函数的解析式(系数用含m的代数式表示);(2)如图1,当m2时,点P为第
4、三象限内抛物线上的一个动点,设APC的面积为S,试求出S与点P的横坐标x之间的函数关系式及S的最大值;(3)如图2,当m取何值时,以A、D、C三点为顶点的三角形与OBC相似?动感体验 请打开几何画板文件名“14衡阳28”,拖动点P运动,可以体验到,当点P运动到AC的中点的正下方时,APC的面积最大拖动y轴上表示实数m的点运动,抛物线的形状会改变,可以体验到,ACD和ADC都可以成为直角思路点拨1用交点式求抛物线的解析式比较简便2连结OP,APC可以割补为:AOP与COP的和,再减去AOC3讨论ACD与OBC相似,先确定ACD是直角三角形,再验证两个直角三角形是否相似4直角三角形ACD存在两种情
5、况图文解析(1)因为抛物线与x轴交于A(3, 0)、B(1, 0)两点,设ya(x3)(x1)代入点C(0,3m),得3m3a解得am所以该二次函数的解析式为ym(x3)(x1)mx22mx3m(2)如图3,连结OP当m2时,C(0,6),y2x24x6,那么P(x, 2x24x6)由于SAOP(2x24x6)3x26x9, SCOP3x,SAOC9,所以SSAPCSAOPSCOPSAOC3x29x所以当时,S取得最大值,最大值为图3 图4 图5 图6(3)如图4,过点D作y轴的垂线,垂足为E过点A作x轴的垂线交DE于F由ym(x3)(x1)m(x1)24m,得D(1,4m)在RtOBC中,O
6、BOC13m如果ADC与OBC相似,那么ADC是直角三角形,而且两条直角边的比为13m如图4,当ACD90时,所以解得m1此时,所以所以CDAOBC如图5,当ADC90时,所以解得此时,而因此DCA与OBC不相似综上所述,当m1时,CDAOBC考点伸展 第(2)题还可以这样割补: 如图6,过点P作x轴的垂线与AC交于点H由直线AC:y2x6,可得H(x,2x6)又因为P(x, 2x24x6),所以HP2x26x因为PAH与PCH有公共底边HP,高的和为A、C两点间的水平距离3,所以SSAPCSAPHSCPH(2x26x) 例 2 2014年湖南省益阳市中考第21题如图1,在直角梯形ABCD中,
7、AB/CD,ADAB,B60,AB10,BC4,点P沿线段AB从点A向点B运动,设APx(1)求AD的长;(2)点P在运动过程中,是否存在以A、P、D为顶点的三角形与以P、C、B为顶点的三角形相似?若存在,求出x的值;若不存在,请说明理由;图1(3)设ADP与PCB的外接圆的面积分别为S1、S2,若SS1S2,求S的最小值. 动感体验 请打开几何画板文件名“14益阳21”,拖动点P在AB上运动,可以体验到,圆心O的运动轨迹是线段BC的垂直平分线上的一条线段观察S随点P运动的图象,可以看到,S有最小值,此时点P看上去象是AB的中点,其实离得很近而已思路点拨1第(2)题先确定PCB是直角三角形,再
8、验证两个三角形是否相似2第(3)题理解PCB的外接圆的圆心O很关键,圆心O在确定的BC的垂直平分线上,同时又在不确定的BP的垂直平分线上而BP与AP是相关的,这样就可以以AP为自变量,求S的函数关系式图文解析(1)如图2,作CHAB于H,那么ADCH在RtBCH中,B60,BC4,所以BH2,CH所以AD(2)因为APD是直角三角形,如果APD与PCB相似,那么PCB一定是直角三角形如图3,当CPB90时,AP1028所以,而此时APD与PCB不相似图2 图3 图4如图4,当BCP90时,BP2BC8所以AP2所以所以APD60此时APDCBP综上所述,当x2时,APDCBP(3)如图5,设A
9、DP的外接圆的圆心为G,那么点G是斜边DP的中点设PCB的外接圆的圆心为O,那么点O在BC边的垂直平分线上,设这条直线与BC交于点E,与AB交于点F设AP2m作OMBP于M,那么BMPM5m在RtBEF中,BE2,B60,所以BF4在RtOFM中,FMBFBM4(5m)m1,OFM30,所以OM所以OB2BM2OM2在RtADP中,DP2AD2AP2124m2所以GP23m2于是SS1S2(GP2OB2)所以当时,S取得最小值,最小值为图5 图6考点伸展关于第(3)题,我们再讨论个问题问题1,为什么设AP2m呢?这是因为线段ABAPPMBMAP2BM10这样BM5m,后续可以减少一些分数运算这
10、不影响求S的最小值问题2,如果圆心O在线段EF的延长线上,S关于m的解析式是什么?如图6,圆心O在线段EF的延长线上时,不同的是FMBMBF(5m)41m此时OB2BM2OM2这并不影响S关于m的解析式例 3 2015年湖南省湘西市中考第26题如图1,已知直线yx3与x轴、y轴分别交于A、B两点,抛物线yx2bxc经过A、B两点,点P在线段OA上,从点O出发,向点A以每秒1个单位的速度匀速运动;同时,点Q在线段AB上,从点A出发,向点B以每秒个单位的速度匀速运动,连结PQ,设运动时间为t秒(1)求抛物线的解析式;(2)问:当t为何值时,APQ为直角三角形;(3)过点P作PE/y轴,交AB于点E
11、,过点Q作QF/y轴,交抛物线于点F,连结EF,当EF/PQ时,求点F的坐标;(4)设抛物线顶点为M,连结BP、BM、MQ,问:是否存在t的值,使以B、Q、M为顶点的三角形与以O、B、P为顶点的三角形相似?若存在,请求出t的值;若不存在,请说明理由 图1动感体验请打开几何画板文件名“15湘西26”,拖动点P在OA上运动,可以体验到,APQ有两个时刻可以成为直角三角形,四边形EPQF有一个时刻可以成为平行四边形,MBQ与BOP有一次机会相似思路点拨1在APQ中,A45,夹A的两条边AP、AQ都可以用t表示,分两种情况讨论直角三角形APQ2先用含t的式子表示点P、Q的坐标,进而表示点E、F的坐标,
12、根据PEQF列方程就好了3MBQ与BOP都是直角三角形,根据直角边对应成比例分两种情况讨论图文解析(1)由yx3,得A(3, 0),B(0, 3)将A(3, 0)、B(0, 3)分别代入yx2bxc,得 解得所以抛物线的解析式为yx22x3(2)在APQ中,PAQ45,AP3t,AQt分两种情况讨论直角三角形APQ:当PQA90时,APAQ解方程3t2t,得t1(如图2)当QPA90时,AQAP解方程t(3t),得t1.5(如图3)图2 图3图4 图5(3)如图4,因为PE/QF,当EF/PQ时,四边形EPQF是平行四边形所以EPFQ所以yEyPyFyQ因为xPt,xQ3t,所以yE3t,yQ
13、t,yF(3t)22(3t)3t24t因为yEyPyFyQ,解方程3t(t24t)t,得t1,或t3(舍去)所以点F的坐标为(2, 3)(4)由yx22x3(x1)24,得M(1, 4)由A(3, 0)、B(0, 3),可知A、B两点间的水平距离、竖直距离相等,AB3由B(0, 3)、M(1, 4),可知B、M两点间的水平距离、竖直距离相等,BM所以MBQBOP90因此MBQ与BOP相似存在两种可能:当时,解得(如图5)当时,整理,得t23t30此方程无实根考点伸展第(3)题也可以用坐标平移的方法:由P(t, 0),E(t, 3t),Q(3t, t),按照PE方向,将点Q向上平移,得F(3t,
14、 3)再将F(3t, 3)代入yx22x3,得t1,或t312 因动点产生的等腰三角形问题课前导学 我们先回顾两个画图问题:1已知线段AB5厘米,以线段AB为腰的等腰三角形ABC有多少个?顶点C的轨迹是什么?2已知线段AB6厘米,以线段AB为底边的等腰三角形ABC有多少个?顶点C的轨迹是什么?已知腰长画等腰三角形用圆规画圆,圆上除了两个点以外,都是顶点C已知底边画等腰三角形,顶角的顶点在底边的垂直平分线上,垂足要除外在讨论等腰三角形的存在性问题时,一般都要先分类如果ABC是等腰三角形,那么存在ABAC,BABC,CACB三种情况解等腰三角形的存在性问题,有几何法和代数法,把几何法和代数法相结合
15、,可以使得解题又好又快几何法一般分三步:分类、画图、计算哪些题目适合用几何法呢?如果ABC的A(的余弦值)是确定的,夹A的两边AB和AC可以用含x的式子表示出来,那么就用几何法如图1,如果ABAC,直接列方程;如图2,如果BABC,那么;如图3,如果CACB,那么代数法一般也分三步:罗列三边长,分类列方程,解方程并检验如果三角形的三个角都是不确定的,而三个顶点的坐标可以用含x的式子表示出来,那么根据两点间的距离公式,三边长(的平方)就可以罗列出来图1 图2 图3 图1例 9 2014年长沙市中考第26题如图1,抛物线yax2bxc(a、b、c是常数,a0)的对称轴为y轴,且经过(0,0)和两点
16、,点P在该抛物线上运动,以点P为圆心的P总经过定点A(0, 2)(1)求a、b、c的值;(2)求证:在点P运动的过程中,P始终与x轴相交;(3)设P与x轴相交于M(x1, 0)、N(x2, 0)两点,当AMN为等腰三角形时,求圆心P的纵坐标动感体验 请打开几何画板文件名“14长沙26”,拖动圆心P在抛物线上运动,可以体验到,圆与x轴总是相交的,等腰三角形AMN存在五种情况思路点拨1不算不知道,一算真奇妙,原来P在x轴上截得的弦长MN4是定值2等腰三角形AMN存在五种情况,点P的纵坐标有三个值,根据对称性,MAMN和NANM时,点P的纵坐标是相等的图文解析(1)已知抛物线的顶点为(0,0),所以
17、yax2所以b0,c0将代入yax2,得解得(舍去了负值)(2)抛物线的解析式为,设点P的坐标为已知A(0, 2),所以而圆心P到x轴的距离为,所以半径PA圆心P到x轴的距离所以在点P运动的过程中,P始终与x轴相交(3)如图2,设MN的中点为H,那么PH垂直平分MN在RtPMH中,所以MH24所以MH2因此MN4,为定值等腰AMN存在三种情况:如图3,当AMAN时,点P为原点O重合,此时点P的纵坐标为0图2 图3图4 图5如图4,当MAMN时,在RtAOM中,OA2,AM4,所以OM2此时xOH2所以点P的纵坐标为如图5,当NANM时,根据对称性,点P的纵坐标为也为如图6,当NANM4时,在R
18、tAON中,OA2,AN4,所以ON2此时xOH2所以点P的纵坐标为如图7,当MNMA4时,根据对称性,点P的纵坐标也为图6 图7考点伸展如果点P在抛物线上运动,以点P为圆心的P总经过定点B(0, 1),那么在点P运动的过程中,P始终与直线y1相切这是因为:设点P的坐标为已知B(0, 1),所以而圆心P到直线y1的距离也为,所以半径PB圆心P到直线y1的距离所以在点P运动的过程中,P始终与直线y1相切例 10 2014年湖南省张家界市中考第25题如图1,在平面直角坐标系中,O为坐标原点,抛物线yax2bxc(a0)过O、B、C三点,B、C坐标分别为(10, 0)和,以OB为直径的A经过C点,直
19、线l垂直x轴于B点(1)求直线BC的解析式;(2)求抛物线解析式及顶点坐标;(3)点M是A上一动点(不同于O、B),过点M作A的切线,交y轴于点E,交直线l于点F,设线段ME长为m,MF长为n,请猜想mn的值,并证明你的结论;(4)若点P从O出发,以每秒1个单位的速度向点B作直线运动,点Q同时从B出发,以相同速度向点C作直线运动,经过t(0t8)秒时恰好使BPQ为等腰三角形,请求出满足条件的t值图1 动感体验请打开几何画板文件名“14张家界25”,拖动点M在圆上运动,可以体验到,EAF保持直角三角形的形状,AM是斜边上的高拖动点Q在BC上运动,可以体验到,BPQ有三个时刻可以成为等腰三角形 思
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 挑战 中考 数学 压轴 全套
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【人****来】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【人****来】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。