导数各类题型方法总结(绝对经典).doc
《导数各类题型方法总结(绝对经典).doc》由会员分享,可在线阅读,更多相关《导数各类题型方法总结(绝对经典).doc(12页珍藏版)》请在咨信网上搜索。
第一章 导数及其应用 一, 导数的概念 1..已知的值是( ) A. B. 2 C. D. -2 变式1:( ) A.-1 B.-2 C.-3 D.1 变式2: ( ) A. B. C. D. 导数各种题型方法总结 请同学们高度重视: 首先,关于二次函数的不等式恒成立的主要解法: 1、分离变量;2变更主元;3根分布;4判别式法 5、二次函数区间最值求法:(1)对称轴(重视单调区间) 与定义域的关系 (2)端点处和顶点是最值所在 其次,分析每种题型的本质,你会发现大部分都在解决“不等式恒成立问题”以及“充分应用数形结合思想”,创建不等关系求出取值范围。 最后,同学们在看例题时,请注意寻找关键的等价变形和回归的基础 一、基础题型:函数的单调区间、极值、最值;不等式恒成立; 1、此类问题提倡按以下三个步骤进行解决: 第一步:令得到两个根; 第二步:画两图或列表; 第三步:由图表可知; 其中不等式恒成立问题的实质是函数的最值问题, 2、常见处理方法有三种: 第一种:分离变量求最值-----用分离变量时要特别注意是否需分类讨论(>0,=0,<0) 第二种:变更主元(即关于某字母的一次函数)-----(已知谁的范围就把谁作为主元); (请同学们参看2010省统测2) 例1:设函数在区间D上的导数为,在区间D上的导数为,若在区间D上,恒成立,则称函数在区间D上为“凸函数”,已知实数m是常数, (1)若在区间上为“凸函数”,求m的取值范围; (2)若对满足的任何一个实数,函数在区间上都为“凸函数”,求的最大值. 解:由函数 得 (1) 在区间上为“凸函数”, 则 在区间[0,3]上恒成立 解法一:从二次函数的区间最值入手:等价于 解法二:分离变量法: ∵ 当时, 恒成立, 当时, 恒成立 等价于的最大值()恒成立, 而()是增函数,则 (2)∵当时在区间上都为“凸函数” 则等价于当时 恒成立 变更主元法 再等价于在恒成立(视为关于m的一次函数最值问题) -2 2 例2:设函数 (Ⅰ)求函数f(x)的单调区间和极值; (Ⅱ)若对任意的不等式恒成立,求a的取值范围. (二次函数区间最值的例子) 解:(Ⅰ) 3a a a 3a 令得的单调递增区间为(a,3a) 令得的单调递减区间为(-,a)和(3a,+) ∴当x=a时,极小值= 当x=3a时,极大值=b. (Ⅱ)由||≤a,得:对任意的恒成立① 则等价于这个二次函数 的对称轴 (放缩法) 即定义域在对称轴的右边,这个二次函数的最值问题:单调增函数的最值问题。 上是增函数. (9分) ∴ 于是,对任意,不等式①恒成立,等价于 又∴ 点评:重视二次函数区间最值求法:对称轴(重视单调区间)与定义域的关系 第三种:构造函数求最值 题型特征:恒成立恒成立;从而转化为第一、二种题型 例3;已知函数图象上一点处的切线斜率为, (Ⅰ)求的值; (Ⅱ)当时,求的值域; (Ⅲ)当时,不等式恒成立,求实数t的取值范围。 解:(Ⅰ)∴, 解得 (Ⅱ)由(Ⅰ)知,在上单调递增,在上单调递减,在上单调递减 又 ∴的值域是 (Ⅲ)令 思路1:要使恒成立,只需,即分离变量 思路2:二次函数区间最值 二、题型一:已知函数在某个区间上的单调性求参数的范围 解法1:转化为在给定区间上恒成立, 回归基础题型 解法2:利用子区间(即子集思想);首先求出函数的单调增或减区间,然后让所给区间是求的增或减区间的子集; 做题时一定要看清楚“在(m,n)上是减函数”与“函数的单调减区间是(a,b)”,要弄清楚两句话的区别:前者是后者的子集 例4:已知,函数. (Ⅰ)如果函数是偶函数,求的极大值和极小值; (Ⅱ)如果函数是上的单调函数,求的取值范围. 解:. (Ⅰ)∵ 是偶函数,∴ . 此时,, 令,解得:. 列表如下: (-∞,-2) -2 (-2,2) 2 (2,+∞) + 0 - 0 + 递增 极大值 递减 极小值 递增 可知:的极大值为, 的极小值为. (Ⅱ)∵函数是上的单调函数, ∴,在给定区间R上恒成立判别式法 则 解得:. 综上,的取值范围是. 例5、已知函数 (I)求的单调区间; (II)若在[0,1]上单调递增,求a的取值范围。子集思想 (I) 1、 当且仅当时取“=”号,单调递增。 2、 a-1 -1 单调增区间: 单调增区间: (II)当 则是上述增区间的子集: 1、时,单调递增 符合题意 2、, 综上,a的取值范围是[0,1]。 三、题型二:根的个数问题 题1函数f(x)与g(x)(或与x轴)的交点======即方程根的个数问题 解题步骤 第一步:画出两个图像即“穿线图”(即解导数不等式)和“趋势图”即三次函数的大致趋势“是先增后减再增”还是“先减后增再减”; 第二步:由趋势图结合交点个数或根的个数写不等式(组);主要看极大值和极小值与0的关系; 第三步:解不等式(组)即可; 例6、已知函数,,且在区间上为增函数. (1) 求实数的取值范围; (2) 若函数与的图象有三个不同的交点,求实数的取值范围. 解:(1)由题意 ∵在区间上为增函数, ∴在区间上恒成立(分离变量法) 即恒成立,又,∴,故∴的取值范围为 (2)设, 令得或由(1)知, ①当时,,在R上递增,显然不合题意… ②当时,,随的变化情况如下表: — ↗ 极大值 ↘ 极小值 ↗ 由于,欲使与的图象有三个不同的交点,即方程有三个不同的实根,故需,即 ∴,解得 综上,所求的取值范围为 根的个数知道,部分根可求或已知。 例7、已知函数 (1)若是的极值点且的图像过原点,求的极值; (2)若,在(1)的条件下,是否存在实数,使得函数的图像与函数的图像恒有含的三个不同交点?若存在,求出实数的取值范围;否则说明理由。高1考1资1源2网 解:(1)∵的图像过原点,则 , 又∵是的极值点,则 -1 (2)设函数的图像与函数的图像恒存在含的三个不同交点, 等价于有含的三个根,即: 整理得: 即:恒有含的三个不等实根 (计算难点来了:)有含的根, 则必可分解为,故用添项配凑法因式分解, 十字相乘法分解: 恒有含的三个不等实根 等价于有两个不等于-1的不等实根。 题2:切线的条数问题====以切点为未知数的方程的根的个数 例7、已知函数在点处取得极小值-4,使其导数的的取值范围为,求:(1)的解析式;(2)若过点可作曲线的三条切线,求实数的取值范围. (1)由题意得: ∴在上;在上;在上 因此在处取得极小值 ∴①,②,③ 由①②③联立得:,∴ (2)设切点Q, 过 令, 求得:,方程有三个根。 需: 故:;因此所求实数的范围为: 题3:已知在给定区间上的极值点个数则有导函数=0的根的个数 解法:根分布或判别式法 例8、 解:函数的定义域为(Ⅰ)当m=4时,f (x)= x3-x2+10x, =x2-7x+10,令 , 解得或. 令 , 解得 可知函数f(x)的单调递增区间为和(5,+∞),单调递减区间为. (Ⅱ)=x2-(m+3)x+m+6, 1 要使函数y=f (x)在(1,+∞)有两个极值点,=x2-(m+3)x+m+6=0的根在(1,+∞) 根分布问题: 则, 解得m>3 例9、已知函数,(1)求的单调区间;(2)令=x4+f(x)(x∈R)有且仅有3个极值点,求a的取值范围. 解:(1) 当时,令解得,令解得, 所以的递增区间为,递减区间为. 当时,同理可得的递增区间为,递减区间为. (2)有且仅有3个极值点 =0有3个根,则或, 方程有两个非零实根,所以 或 而当或时可证函数有且仅有3个极值点 其它例题: 1、(最值问题与主元变更法的例子).已知定义在上的函数在区间上的最大值是5,最小值是-11. (Ⅰ)求函数的解析式; (Ⅱ)若时,恒成立,求实数的取值范围. 解:(Ⅰ) 令=0,得 因为,所以可得下表: 0 + 0 - ↗ 极大 ↘ 因此必为最大值,∴因此, , 即,∴,∴ (Ⅱ)∵,∴等价于, 令,则问题就是在上恒成立时,求实数的取值范围, 为此只需,即, 解得,所以所求实数的取值范围是[0,1]. 2、(根分布与线性规划例子) (1)已知函数 (Ⅰ) 若函数在时有极值且在函数图象上的点处的切线与直线平行, 求的解析式; (Ⅱ) 当在取得极大值且在取得极小值时, 设点所在平面区域为S, 经过原点的直线L将S分为面积比为1:3的两部分, 求直线L的方程. 解: (Ⅰ). 由, 函数在时有极值 , ∴ ∵ ∴ 又∵ 在处的切线与直线平行, ∴ 故 ∴ ……………………. 7分 (Ⅱ) 解法一: 由 及在取得极大值且在取得极小值, ∴ 即 令, 则 ∴ ∴ 故点所在平面区域S为如图△ABC, 易得, , , , , 同时DE为△ABC的中位线, ∴ 所求一条直线L的方程为: 另一种情况设不垂直于x轴的直线L也将S分为面积比为1:3的两部分, 设直线L方程为,它与AC,BC分别交于F、G, 则 , 由 得点F的横坐标为: 由 得点G的横坐标为: ∴ 即 解得: 或 (舍去) 故这时直线方程为: 综上,所求直线方程为: 或 .…………….………….12分 (Ⅱ) 解法二: 由 及在取得极大值且在取得极小值, ∴ 即 令, 则 ∴ ∴ 故点所在平面区域S为如图△ABC, 易得, , , , , 同时DE为△ABC的中位线, ∴所求一条直线L的方程为: 另一种情况由于直线BO方程为: , 设直线BO与AC交于H , 由 得直线L与AC交点为: ∵ , , ∴ 所求直线方程为: 或 3、(根的个数问题)已知函数的图象如图所示。 (Ⅰ)求的值; (Ⅱ)若函数的图象在点处的切线方程为,求函数f ( x )的解析式; (Ⅲ)若方程有三个不同的根,求实数a的取值范围。 解:由题知: (Ⅰ)由图可知 函数f ( x )的图像过点( 0 , 3 ),且= 0 得 (Ⅱ)依题意 = – 3 且f ( 2 ) = 5 解得a = 1 , b = – 6 所以f ( x ) = x3 – 6x2 + 9x + 3 (Ⅲ)依题意 f ( x ) = ax3 + bx2 – ( 3a + 2b )x + 3 ( a>0 ) = 3ax2 + 2bx – 3a – 2b 由= 0b = – 9a ① 若方程f ( x ) = 8a有三个不同的根,当且仅当 满足f ( 5 )<8a<f ( 1 ) ② 由① ② 得 – 25a + 3<8a<7a + 3<a<3 - 所以 当<a<3时,方程f ( x ) = 8a有三个不同的根。………… 12分 4、(根的个数问题)已知函数 (1)若函数在处取得极值,且,求的值及的单调区间; (2)若,讨论曲线与的交点个数. 解:(1) ………………………………………………………………………2分 令得 令得 ∴的单调递增区间为,,单调递减区间为…………5分 (2)由题得 即 令……………………6分 令得或……………………………………………7分 当即时 此时,,,有一个交点;…………………………9分 当即时, + — , ∴当即时,有一个交点; 当即时,有两个交点; 当时,,有一个交点.………………………13分 综上可知,当或时,有一个交点; 当时,有两个交点.…………………………………14分 5、(简单切线问题)已知函数图象上斜率为3的两条切线间的距离为,函数. (Ⅰ) 若函数在处有极值,求的解析式; (Ⅱ) 若函数在区间上为增函数,且在区间上都成立,求实数的取值范围. 函数中任意性和存在性问题探究 高考中全称命题和存在性命题与导数的结合是近年高考的一大亮点,下面结合高考试题对此类问题进行归纳探究 一、相关结论: 结论1:;【如图一】 结论2:;【如图二】 结论3:;【如图三】 结论4:;【如图四】 结论5:的值域和的值域交集不为空;【如图五】 【例题1】:已知两个函数; (1) 若对,都有成立,求实数的取值范围; (2) 若,使得成立,求实数的取值范围; (3) 若对,都有成立,求实数的取值范围; 解:(1)设,(1)中的问题可转化为:时,恒成立,即。 ; 当变化时,的变化情况列表如下: -3 (-3,-1) -1 (-1,2) 2 (2,3) 3 (x) + 0 - 0 + h(x) k-45 增函数 极大值 减函数 极小值 增函数 k-9 因为,所以,由上表可知,故k-45≥0,得k≥45,即k∈[45,+∞). 小结:①对于闭区间I,不等式f(x)<k对x∈I时恒成立[f(x)]max<k, x∈I;不等式f(x)>k对x∈I时恒成立[f(x)]min>k, x∈I. ②此题常见的错误解法:由[f(x)]max≤[g(x)]min解出k的取值范围.这种解法的错误在于条件“[f(x)]max≤[g(x)]min”只是原题的充分不必要条件,不是充要条件,即不等价. (2)根据题意可知,(2)中的问题等价于h(x)= g(x)-f(x) ≥0在x∈[-3,3]时有解,故[h(x)]max≥0. 由(1)可知[h(x)]max= k+7,因此k+7≥0,即k∈[7,+∞). (3)根据题意可知,(3)中的问题等价于[f(x)]max≤[g(x)]min,x∈[-3,3]. 由二次函数的图像和性质可得, x∈[-3,3]时, [f(x)]max=120-k. 仿照(1),利用导数的方法可求得x∈[-3,3]时, [g(x)]min=-21. 由120-k≥-21得k≥141,即k∈[141,+∞). 说明:这里的x1,x2是两个互不影响的独立变量. 从上面三个问题的解答过程可以看出,对于一个不等式一定要看清是对“x”恒成立,还是“x”使之成立,同时还要看清不等式两边是同一个变量,还是两个独立的变量,然后再根据不同的情况采取不同的等价条件,千万不要稀里糊涂的去猜.. 二、相关类型题: 〈一〉、型; 形如型不等式,是恒成立问题中最基本的类型,它的理论基础是“在上恒成立,则在x∈D上恒成立,则”.许多复杂的恒成立问题最终都可归结到这一类型. 例1 :已知二次函数,若时,恒有,求实数a的取值范围. 解:,∴;即; 当时,不等式显然成立, ∴a∈R. 当时,由得:,而 . ∴. 又∵,∴,综上得a的范围是。 〈二〉、型 例2 已知函数,若对,都有成立,则的最小值为____. 解 ∵对任意x∈R,不等式恒成立, ∴分别是的最小值和最大值. 对于函数,取得最大值和最小值的两点之间最小距离是π,即半个周期. 又函数的周期为4,∴的最小值为2. 〈三〉、.型 例3: (2005湖北)在这四个函数中,当时,使恒成立的函数的个数是( ) A.0 B.1 C.2 D.3 解:本题实质就是考察函数的凸凹性,即满足条件的函数,应是凸函数的性质,画草图即知符合题意; 〈四〉、.型 例4 已知函数定义域为,,若,时,都有,若对所有,恒成立,求实数取值范围. 解:任取,则,由已知,又,∴f,即在上为增函数. ∵,∴,恒有; ∴要使对所有,恒成立,即要恒成立, 故恒成立,令,只须且, 解得或或。 评注: 形如不等式或恒成立,实际上是函数的单调性的另一种表现形式,在解题时要注意此种类型不等式所蕴涵的重要信息. 〈五〉、.型: 例5: 已知,,若当时,)恒成立,求实数t的取值范围. 解:在恒成立,即在恒成立在上的最大值小于或等于零. 令,,∵ ∴,即在[0,1]上单调递减,F(0)是最大值. ∴,即。 〈六〉、型 例6:已知函数,若对任意,都有,求的范围. 解:因为对任意的,都有成立, ∴,∵,令得x>3或x<-1;得;∴在为增函数,在为减函数. ∵,∴.∴,∴。 〈七〉、(为常数)型; 例7 :已知函数,则对任意()都有 恒成立,当且仅当=____,=____时取等号. 解:因为恒成立, 由,易求得,,∴。 例8 :已知函数满足:(1)定义域为;(2)方程至少有两个实根和;(3)过图像上任意两点的直线的斜率绝对值不大于1. (1)证明|; (2)证明:对任意,都有. 证明 (1)略; (2)由条件(2)知, 不妨设,由(3)知, 又∵ ;∴ 〈八〉、型 例9: 已知函数,对于时总有成立,求实数的范围. 解 由,得, 当时,,∵, ∴, ∴ 评注 由导数的几何意义知道,函数图像上任意两点连线的斜率的取值范围,就是曲线上任一点切线的斜率(如果有的话)的范围,利用这个结论,可以解决形如|或(m>0)型的不等式恒成立问题. 考前寄语:①先易后难,先熟后生;②一慢一快:审题要慢,做题要快;③不能小题难做,小题大做,而要小题小做,小题巧做;④我易人易我不大意,我难人难我不畏难;⑤考试不怕题不会,就怕会题做不对;⑥基础题拿满分,中档题拿足分,难题力争多得分,似曾相识题力争不失分;⑦对数学解题有困难的考生的建议:立足中下题目,力争高上水平,有时“放弃”是一种策略. 12- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 导数 各类 题型 方法 总结 绝对 经典
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【天****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【天****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【天****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【天****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文