2018年四川省雅安市中考数学试卷含答案.doc
《2018年四川省雅安市中考数学试卷含答案.doc》由会员分享,可在线阅读,更多相关《2018年四川省雅安市中考数学试卷含答案.doc(16页珍藏版)》请在咨信网上搜索。
2018年四川省雅安市中考数学试卷 一、选择题<共12小题,每小题3分,满分36分)每小题的四个选项中,有且仅有一个正确的。 1.<3分)<2018•雅安)﹣的相反数是< ) A. 2 B. ﹣2 C. D. ﹣ 考点: 相反数. 分析: 根据只有符号不同的两个数叫做互为相反数解答. 解答: 解:﹣的相反数是. 故选C. 点评: 本题考查了相反数的定义,是基础题,熟记概念是解题的关键. 2.<3分)<2018•雅安)五边形的内角和为< ) A. 720° B. 540° C. 360° D. 180° 考点: 多边形内角与外角. 分析: 利用多边形的内角和定理即可求解. 解答: 解:五边形的内角和为:<5﹣2)×180=540°. 故选B. 点评: 本题考查了多边形的内角和定理的计算公式,理解公式是关键. 3.<3分)<2018•雅安)已知x1,x2是一元二次方程x2﹣2x=0的两根,则x1+x2的值是< )b5E2RGbCAP A. 0 B. 2 C. ﹣2 D. 4 考点: 根与系数的关系. 专题: 计算题. 分析: 利用根与系数的关系即可求出两根之和. 解答: 解:∵x1,x2是一元二次方程x2﹣2x=0的两根, ∴x1+x2=2. 故选B 点评: 此题考查了根与系数的关系,熟练掌握根与系数的关系是解本题的关键. 4.<3分)<2018•雅安)如图,AB∥CD,AD平分∠BAC,且∠C=80°,则∠D的度数为< )p1EanqFDPw A. 50° B. 60° C. 70° D. 100° 考点: 平行线的性质;角平分线的定义. 分析: 根据角平分线的定义可得∠BAD=∠CAD,再根据两直线平行,内错角相等可得∠BAD=∠D,从而得到∠CAD=∠D,再利用三角形的内角和定理列式计算即可得解. 解答: 解:∵AD平分∠BAC, ∴∠BAD=∠CAD, ∵AB∥CD, ∴∠BAD=∠D, ∴∠CAD=∠D, 在△ACD中,∠C+∠D+∠CAD=180°, ∴80°+∠D+∠D=180°, 解得∠D=50°. 故选A. 点评: 本题考查了平行线的性质,角平分线的定义,三角形的内角和定理,熟记性质并准确识图是解题的关键. 5.<3分)<2018•雅安)下列计算正确的是< ) A. <﹣2)2=﹣2 B. a2+a3=a5 C. <3a2)2=3a4 D. x6÷x2=x4 考点: 同底数幂的除法;合并同类项;幂的乘方与积的乘方. 分析: 根据乘方意义可得<﹣2)2=4,根据合并同类项法则可判断出B的正误;根据积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘可判断出C的正误;根据同底数幂的除法法则:底数不变,指数相减可判断出D的正误. 解答: 解:A、<﹣2)2=4,故此选项错误; B、a2、a3不是同类项,不能合并,故此选项错误; C、<3a2)2=9a4,故此选项错误; D、x6÷x2=x4,故此选项正确; 故选:D. 点评: 此题主要考查了乘方、合并同类项法则、幂的乘方、同底数幂的除法,关键是熟练掌握计算法则. 6.<3分)<2018•雅安)一组数据2,4,x,2,4,7的众数是2,则这组数据的平均数、中位数分别为< )DXDiTa9E3d A. 3.5,3 B. 3,4 C. 3,3.5 D. 4,3 考点: 众数;算术平均数;中位数. 分析: 根据题意可知x=2,然后根据平均数、中位数的定义求解即可. 解答: 解:∵这组数据的众数是2, ∴x=2, 将数据从小到大排列为:2,2,2,4,4,7, 则平均数=3.5 中位数为:3. 故选A. 点评: 本题考查了众数、中位数及平均数的定义,属于基础题,掌握基本定义是关键. 7.<3分)<2018•雅安)不等式组的整数解有< ) 个. A. 1 B. 2 C. 3 D. 4 考点: 一元一次不等式组的整数解. 分析: 先求出不等式组的解集,再确定符合题意的整数解的个数即可得出答案. 解答: 解:由2x﹣1<3,解得:x<2, 由﹣≤1,解得x≥﹣2, 故不等式组的解为:﹣2≤x<2, 所以整数解为:﹣2,﹣1,0,1.共有4个. 故选D. 点评: 本题主要考查了一元一次不等式组的解法,难度一般,关键是会根据未知数的范围确定它所满足的特殊条件的值.一般方法是先解不等式组,再根据解集求出特殊值. 8.<3分)<2018•雅安)如图,DE是△ABC的中位线,延长DE至F使EF=DE,连接CF,则S△CEF:S四边形BCED的值为< )RTCrpUDGiT A. 1:3 B. 2:3 C. 1:4 D. 2:5 考点: 相似三角形的判定与性质;全等三角形的判定与性质;三角形中位线定理. 分析: 先利用SAS证明△ADE≌△CFE<SAS),得出S△ADE=S△CFE,再由DE为中位线,判断△ADE∽△ABC,且相似比为1:2,利用相似三角形的面积比等于相似比,得到S△ADE:S△ABC=1:4,则S△ADE:S四边形BCED=1:3,进而得出S△CEF:S四边形BCED=1:3. 解答: 解:∵DE为△ABC的中位线, ∴AE=CE. 在△ADE与△CFE中, , ∴△ADE≌△CFE<SAS), ∴S△ADE=S△CFE. ∵DE为△ABC的中位线, ∴△ADE∽△ABC,且相似比为1:2, ∴S△ADE:S△ABC=1:4, ∵S△ADE+S四边形BCED=S△ABC, ∴S△ADE:S四边形BCED=1:3, ∴S△CEF:S四边形BCED=1:3. 故选A. 点评: 本题考查了全等三角形、相似三角形的判定与性质,三角形中位线定理.关键是利用中位线判断相似三角形及相似比. 9.<3分)<2018•雅安)将抛物线y=<x﹣1)2+3向左平移1个单位,再向下平移3个单位后所得抛物线的解读式为< )5PCzVD7HxA A. y=<x﹣2)2 B. y=<x﹣2)2+6 C. y=x2+6 D. y=x2 考点: 二次函数图象与几何变换. 分析: 根据“左加右减、上加下减”的原则进行解答即可. 解答: 解:将抛物线y=<x﹣1)2+3向左平移1个单位所得直线解读式为:y=<x﹣1+1)2+3,即y=x2+3; 再向下平移3个单位为:y=x2+3﹣3,即y=x2. 故选D. 点评: 本题考查的是二次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键. 10.<3分)<2018•雅安)如图,AB是⊙O的直径,C、D是⊙O上的点,∠CDB=30°,过点C作⊙O的切线交AB的延长线于E,则sin∠E的值为< )jLBHrnAILg A. B. C. D. 考点: 切线的性质;圆周角定理;特殊角的三角函数值. 分析: 首先连接OC,由CE是⊙O切线,可得OC⊥CE,由圆周角定理,可得∠BOC=60°,继而求得∠E的度数,则可求得sin∠E的值. 解答: 解:连接OC, ∵CE是⊙O切线, ∴OC⊥CE, 即∠OCE=90°, ∵∠CDB=30°, ∴∠COB=2∠CDB=60°, ∴∠E=90°﹣∠COB=30°, ∴sin∠E=. 故选A. 点评: 此题考查了切线的性质、圆周角定理以及特殊角的三角函数值.此题难度不大,注意掌握辅助线的作法,注意数形结合思想的应用. 11.<3分)<2018•雅安)二次函数y=ax2+bx+c的图象如图所示,则一次函数y=ax+b与反比例函数y=在同一平面直角坐标系中的大致图象为< )xHAQX74J0X A. B. C. D. 考点: 二次函数的图象;一次函数的图象;反比例函数的图象. 分析: 根据二次函数图象开口向上得到a>0,再根据对称轴确定出b,根据与y轴的交点确定出c>0,然后确定出一次函数图象与反比例函数图象的情况,即可得解. 解答: 解:∵二次函数图象开口方向向上, ∴a>0, ∵对称轴为直线x=﹣>0, ∴b<0, ∵与y轴的正半轴相交, ∴c>0, ∴y=ax+b的图象经过第一三象限,且与y轴的负半轴相交, 反比例函数y=图象在第一三象限, 只有B选项图象符合. 故选B. 点评: 本题考查了二次函数的图形,一次函数的图象,反比例函数的图象,熟练掌握二次函数的有关性质:开口方向、对称轴、与y轴的交点坐标等确定出a、b、c的情况是解题的关键. 12.<3分)<2018•雅安)如图,正方形ABCD中,点E、F分别在BC、CD上,△AEF是等边三角形,连接AC交EF于G,下列结论:①BE=DF,②∠DAF=15°,③AC垂直平分EF,④BE+DF=EF,⑤S△CEF=2S△ABE.其中正确结论有< )个.LDAYtRyKfE A. 2 B. 3 C. 4 D. 5 考点: 正方形的性质;全等三角形的判定与性质;等边三角形的性质. 分析: 通过条件可以得出△ABE≌△ADF而得出∠BAE=∠DAF,BE=DF,由正方形的性质就可以得出EC=FC,就可以得出AC垂直平分EF,设EC=x,BE=y,由勾股定理就可以得出x与y的关系,表示出BE与EF,利用三角形的面积公式分别表示出S△CEF和2S△ABE再通过比较大小就可以得出结论 解答: 解:∵四边形ABCD是正方形, ∴AB=BC=CD=AD,∠B=∠BCD=∠D=∠BAD=90°. ∵△AEF等边三角形, ∴AE=EF=AF,∠EAF=60°. ∴∠BAE+∠DAF=30°. 在Rt△ABE和Rt△ADF中, , Rt△ABE≌Rt△ADF<HL), ∴BE=DF,①正确. ∠BAE=∠DAF, ∴∠DAF+∠DAF=30°, 即∠DAF=15°②正确, ∵BC=CD, ∴BC﹣BE=CD﹣DF, 及CE=CF, ∵AE=AF, ∴AC垂直平分EF.③正确. 设EC=x,由勾股定理,得 EF=x,CG=x,AG=x, ∴AC=, ∴AB=, ∴BE=﹣x=, ∴BE+DF=x﹣x≠x,④错误, ∵S△CEF=, S△ABE==, ∴2S△ABE==S△CEF,⑤正确. 综上所述,正确的有4个,故选C. 点评: 本题考查了正方形的性质的运用,全等三角形的判定及性质的运用,勾股定理的运用,等边三角形的性质的运用,三角形的面积公式的运用,解答本题时运用勾股定理的性质解题时关键. 二、填空题<共5小题,每小题3分,满分15分) 13.<3分)<2018•雅安)已知一组数2,4,8,16,32,…,按此规律,则第n个数是 2n. 考点: 规律型:数字的变化类. 分析: 先观察所给的数,得出第几个数正好是2的几次方,从而得出第n个数是2的n次方. 解答: 解:∵第一个数是2=21, 第二个数是4=22, 第三个数是8=23, ∴第n个数是2n; 故答案为:2n. 点评: 此题考查了数字的变化类,通过观察,分析、归纳并发现其中的规律,并应用发现的规律解决实际问题,本题的关键是第几个数就是2的几次方. 14.<3分)<2018•雅安)从﹣1,0,,π,3中随机任取一数,取到无理数的概率是. 考点: 概率公式;无理数. 分析: 数据﹣1,0,,π,3中无理数只有π,根据概率公式求解即可. 解答: 解∵数据﹣1,0,,π,3中无理数只有π, ∴取到无理数的概率为:, 故答案为: 点评: 此题考查了概率公式的应用.注意概率=所求情况数与总情况数之比. 15.<3分)<2018•雅安)若<a﹣1)2+|b﹣2|=0,则以a、b为边长的等腰三角形的周长为 5 .Zzz6ZB2Ltk 考点: 等腰三角形的性质;非负数的性质:绝对值;非负数的性质:偶次方;三角形三边关系. 专题: 分类讨论. 分析: 先根据非负数的性质列式求出a、b再分情况讨论求解即可. 解答: 解:根据题意得,a﹣1=0,b﹣2=0, 解得a=1,b=2, ①若a=1是腰长,则底边为2,三角形的三边分别为1、1、2, ∵1+1=2, ∴不能组成三角形, ②若a=2是腰长,则底边为1,三角形的三边分别为2、2、1, 能组成三角形, 周长=2+2+1=5. 故答案为:5. 点评: 本题考查了等腰三角形的性质,非负数的性质,以及三角形的三边关系,难点在于要讨论求解. 16.<3分)<2018•雅安)如图,在▱ABCD中,E在AB上,CE、BD交于F,若AE:BE=4:3,且BF=2,则DF=..dvzfvkwMI1 考点: 相似三角形的判定与性质;平行四边形的性质. 分析: 由四边形ABCD是平行四边形,可得AB∥CD,AB=CD,继而可判定△BEF∽△DCF,根据相似三角形的对应边成比例,即可得BF:DF=BE:CD问题得解. 解答: 解:∵四边形ABCD是平行四边形, ∴AB∥CD,AB=CD, ∵AE:BE=4:3, ∴BE:AB=3:7, ∴BE:CD=3:7. ∵AB∥CD, ∴△BEF∽△DCF, ∴BF:DF=BE:CD=3:7, 即2:DF=3:7, ∴DF=. 故答案为:. 点评: 此题考查了相似三角形的判定与性质与平行四边形的性质.此题比较简单,解题的关键是根据题意判定△BEF∽△DCF,再利用相似三角形的对应边成比例的性质求解. 17.<3分)<2018•雅安)在平面直角坐标系中,已知点A<﹣,0),B<,0),点C在坐标轴上,且AC+BC=6,写出满足条件的所有点C的坐标 <0,2),<0,﹣2),<﹣3,0),<3,0) .rqyn14ZNXI 考点: 勾股定理;坐标与图形性质. 专题: 分类讨论. 分析: 需要分类讨论:①当点C位于x轴上时,根据线段间的和差关系即可求得点C的坐标;②当点C位于y轴上时,根据勾股定理求点C的坐标. 解答: 解:如图,①当点C位于y轴上时,设C<0,b). 则+=6,解得,b=2或b=﹣2, 此时C<0,2),或C<0,﹣2). 如图,②当点C位于x轴上时,设C<a,0). 则|﹣﹣a|+|a﹣|=6,即2a=6或﹣2a=6, 解得a=3或a=﹣3, 此时C<﹣3,0),或C<3,0). 综上所述,点C的坐标是:<0,2),<0,﹣2),<﹣3,0),<3,0). 故答案是:<0,2),<0,﹣2),<﹣3,0),<3,0). 点评: 本题考查了勾股定理、坐标与图形的性质.解题时,要分类讨论,以防漏解.另外,当点C在y轴上时,也可以根据两点间的距离公式来求点C的坐标. 三、解答题<共7小题,满分69分) 18.<12分)<2018•雅安)<1)计算:8+|﹣2|﹣4sin45°﹣ <2)先化简,再求值:<1﹣)÷,其中m=2. 考点: 分式的化简求值;实数的运算;负整数指数幂;特殊角的三角函数值. 专题: 计算题. 分析: <1)根据绝对值、特殊角的三角函数值、负指数幂的定义解答; <2)将括号内的部分通分后相减,再将除式因式分解,然后将除法转化为乘法解答. 解答: 解:<1)原式=8+2﹣4×﹣ =8+2﹣2﹣3 =7﹣2; <2)原式=<﹣)÷ =• =, 当m=2时,原式==. 点评: 本题考查了实数的运算及分式的化简求值,熟悉绝对值、特殊角的三角函数值、负指数幂的运算法则及能熟练因式分解是解题的关键. 19.<9分)<2018•雅安)在▱ABCD中,点E、F分别在AB、CD上,且AE=CF. <1)求证:△ADE≌△CBF; <2)若DF=BF,求证:四边形DEBF为菱形. 考点: 菱形的判定;全等三角形的判定与性质;平行四边形的性质. 专题: 证明题. 分析: <1)首先根据平行四边形的性质可得AD=BC,∠A=∠C,再加上条件AE=CF可利用SAS证明△ADE≌△CBF; <2)首先证明DF=BE,再加上条件AB∥CD可得四边形DEBF是平行四边形,又DF=FB,可根据邻边相等的平行四边形为菱形证出结论. 解答: 证明:<1)∵四边形ABCD是平行四边形, ∴AD=BC,∠A=∠C, ∵在△ADE和△CBF中, , ∴△ADE≌△CBF<SAS); <2)∵四边形ABCD是平行四边形, ∴AB∥CD,AB=CD, ∵AE=CF, ∴DF=EB, ∴四边形DEBF是平行四边形, 又∵DF=FB, ∴四边形DEBF为菱形. 点评: 此题主要考查了全等三角形的判定,以及菱形的判定,关键是掌握全等三角形的判定定理,以及菱形的判定定理,平行四边形的性质. 20.<8分)<2018•雅安)甲、乙二人在一环形场地上从A点同时同向匀速跑步,甲的速度是乙的2.5倍,4分钟两人首次相遇,此时乙还需要跑300M才跑完第一圈,求甲、乙二人的速度及环形场地的周长.<列方程< 组) 求解)EmxvxOtOco 考点: 二元一次方程组的应用. 分析: 设乙的速度为xM/分,则甲的速度为2.5xM/分,环形场地的周长为yM,根据环形问题的数量关系,同时、同地、同向而行首次相遇快者走的路程﹣慢者走的路程=环形周长建立方程求出其解即可. 解答: 解:设乙的速度为xM/秒,则甲的速度为2.5xM/秒,环形场地的周长为yM,由题意,得 , 解得:, ∴甲的速度为:2.5×150=375M/分. 答:乙的速度为150M/分,则甲的速度为375M/分,环形场地的周长为900M. 点评: 本题考查了列二元一次方程组解环形问题的运用,二元一次方程组的解法的运用,解答时运用环形问题的数量关系建立方程是关键. 21.<8分)<2018•雅安)某学校为了增强学生体质,决定开设以下体育课外活动工程:A.篮球 B.乒乓球C.羽毛球 D.足球,为了解学生最喜欢哪一种活动工程,随机抽取了部分学生进行调查,并将调查结果绘制成了两幅不完整的统计图,请回答下列问题:SixE2yXPq5 <1)这次被调查的学生共有 200 人; <2)请你将条形统计图<2)补充完整; <3)在平时的乒乓球工程训练中,甲、乙、丙、丁四人表现优秀,现决定从这四名同学中任选两名参加乒乓球比赛,求恰好选中甲、乙两位同学的概率<用树状图或列表法解答)6ewMyirQFL 考点: 条形统计图;扇形统计图;列表法与树状图法. 专题: 计算题. 分析: <1)由喜欢篮球的人数除以所占的百分比即可求出总人数; <2)由总人数减去喜欢A,B及D的人数求出喜欢C的人数,补全统计图即可; <3)根据题意列出表格,得出所有等可能的情况数,找出满足题意的情况数,即可求出所求的概率. 解答: 解:<1)根据题意得:20÷=200<人), 则这次被调查的学生共有200人; <2)补全图形,如图所示: <3)列表如下: 甲 乙 丙 丁 甲 ﹣﹣﹣ <乙,甲) <丙,甲) <丁,甲) 乙 <甲,乙) ﹣﹣﹣ <丙,乙) <丁,乙) 丙 <甲,丙) <乙,丙) ﹣﹣﹣ <丁,丙) 丁 <甲,丁) <乙,丁) <丙,丁) ﹣﹣﹣ 所有等可能的结果为12种,其中符合要求的只有2种, 则P==. 点评: 此题考查了条形统计图,扇形统计图,以及列表法与树状图法,弄清题意是解本题的关键. 22.<10分)<2018•雅安)如图,在平面直角坐标系中,一次函数y=kx+b<k≠0)的图象与反比例函数y=<m≠0)的图象交于A、B两点,与x轴交于C点,点A的坐标为<n,6),点C的坐标为<﹣2,0),且tan∠ACO=2.kavU42VRUs <1)求该反比例函数和一次函数的解读式; <2)求点B的坐标; <3)在x轴上求点E,使△ACE为直角三角形.<直接写出点E的坐标) 考点: 反比例函数综合题. 专题: 综合题. 分析: <1)过点A作AD⊥x轴于D,根据A、C的坐标求出AD=6,CD=n+2,已知tan∠ACO=2,可求出n的值,把点的坐标代入解读式即可求得反比例函数和一次函数解读式; <2)求出反比例函数和一次函数的另外一个交点即可; <3)分两种情况:①AE⊥x轴,②EA⊥AC,分别写出E的坐标即可. 解答: 解:<1)过点A作AD⊥x轴于D, ∵C的坐标为<﹣2,0),A的坐标为<n,6), ∴AD=6,CD=n+2, ∵tan∠ACO=2, ∴==2, 解得:n=1, 故A<1,6), ∴m=1×6=6, ∴反比例函数表达式为:y=, 又∵点A、C在直线y=kx+b上, ∴, 解得:, ∴一次函数的表达式为:y=2x+4; <2)由得: =2x+4, 解得:x=1或x=﹣3, ∵A<1,6), ∴B<﹣3,﹣2); <3)分两种情况:①当AE⊥x轴时, 即点E与点D重合, 此时E1<1,0); ②当EA⊥AC时, 此时△ADE∽△CDA, 则=, DE==12, 又∵D的坐标为<1,0), ∴E2<13,0). 点评: 本题考查了反比例函数的综合题,涉及了点的坐标的求法以及待定系数法求函数解读式的知识,主要考查学生的计算能力和观察图形的能力. 23.<10分)<2018•雅安)如图,AB是⊙O的直径,BC为⊙O的切线,D为⊙O上的一点,CD=CB,延长CD交BA的延长线于点E.y6v3ALoS89 <1)求证:CD为⊙O的切线; <2)若BD的弦心距OF=1,∠ABD=30°,求图中阴影部分的面积.<结果保留π) 考点: 切线的判定与性质;扇形面积的计算. 分析: <1)首先连接OD,由BC是⊙O的切线,可得∠ABC=90°,又由CD=CB,OB=OD,易证得∠ODC=∠ABC=90°,即可证得CD为⊙O的切线; <2)在Rt△OBF中,∠ABD=30°,OF=1,可求得BD的长,∠BOD的度数,又由S阴影=S扇形OBD﹣S△BOD,即可求得答案. 解答: <1)证明:连接OD, ∵BC是⊙O的切线, ∴∠ABC=90°, ∵CD=CB, ∴∠CBD=∠CDB, ∵OB=OD, ∴∠OBD=∠ODB, ∴∠ODC=∠ABC=90°, 即OD⊥CD, ∵点D在⊙O上, ∴CD为⊙O的切线; <2)解:在Rt△OBF中, ∵∠ABD=30°,OF=1, ∴∠BOF=60°,OB=2,BF=, ∵OF⊥BD, ∴BD=2BF=2,∠BOD=2∠BOF=120°, ∴S阴影=S扇形OBD﹣S△BOD=﹣×2×1=π﹣. 点评: 此题考查了切线的判定与性质、垂径定理以及扇形的面积.此题难度适中,注意掌握辅助线的作法,注意数形结合思想的应用. 24.<12分)<2018•雅安)如图,已知抛物线y=ax2+bx+c经过A<﹣3,0),B<1,0),C<0,3)三点,其顶点为D,对称轴是直线l,l与x轴交于点H.M2ub6vSTnP <1)求该抛物线的解读式; <2)若点P是该抛物线对称轴l上的一个动点,求△PBC周长的最小值; <3)如图<2),若E是线段AD上的一个动点< E与A、D不重合),过E点作平行于y轴的直线交抛物线于点F,交x轴于点G,设点E的横坐标为m,△ADF的面积为S.0YujCfmUCw ①求S与m的函数关系式; ②S是否存在最大值?若存在,求出最大值及此时点E的坐标; 若不存在,请说明理由. 考点: 二次函数综合题. 专题: 综合题. 分析: <1)根据函数图象经过的三点,用待定系数法确定二次函数的解读式即可; <2)根据BC是定值,得到当PB+PC最小时,△PBC的周长最小,根据点的坐标求得相应线段的长即可; <3)设点E的横坐标为m,表示出E<m,2m+6),F<m,﹣m2﹣2m+3),最后表示出EF的长,从而表示出S于m的函数关系,然后求二次函数的最值即可. 解答: 解:<1)由题意可知: 解得: ∴抛物线的解读式为:y=﹣x2﹣2x+3; <2)∵△PBC的周长为:PB+PC+BC ∵BC是定值, ∴当PB+PC最小时,△PBC的周长最小, ∵点A、点B关于对称轴I对称, ∴连接AC交l于点P,即点P为所求的点 ∵AP=BP ∴△PBC的周长最小是:PB+PC+BC=AC+BC ∵A<﹣3,0),B<1,0),C<0,3), ∴AC=3,BC=; <3)①∵抛物线y=﹣x2﹣2x+3顶点D的坐标为<﹣1,4) ∵A<﹣3,0) ∴直线AD的解读式为y=2x+6 ∵点E的横坐标为m, ∴E<m,2m+6),F<m,﹣m2﹣2m+3) ∴EF=﹣m2﹣2m+3﹣<2m+6) =﹣m2﹣4m﹣3 ∴S=S△DEF+S△AEF =EF•GH+EF•AC =EF•AH =<﹣m2﹣4m﹣3)×2 =﹣m2﹣4m﹣3; ②S=﹣m2﹣4m﹣3 =﹣<m+2)2+1; ∴当m=﹣2时,S最大,最大值为1 此时点E的坐标为<﹣2,2). 点评: 此题主要考查了待定系数法求二次函数解读式以及二次函数的最值,根据点的坐标表示出线段的长是表示出三角形的面积的基础. 申明: 所有资料为本人收集整理,仅限个人学习使用,勿做商业用途。 - 16 - / 16- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2018 四川省 雅安市 中考 数学试卷 答案
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【人****来】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【人****来】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【人****来】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【人****来】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文