河南省2019年中考数学试题与答案【word解析版】.doc
《河南省2019年中考数学试题与答案【word解析版】.doc》由会员分享,可在线阅读,更多相关《河南省2019年中考数学试题与答案【word解析版】.doc(16页珍藏版)》请在咨信网上搜索。
2019 年河南省中考数学试卷 一、选择题(每小题 3 分,共 24 分) 1.( 3 分) (2019 年河南省 ) 下列各数中,最小的数是( ) A. 0 B. C. ﹣D.﹣3 考点: 有理数大小比较. 分析: 根据正数大于 0, 0 大于负数,可得答案. 解答: 解:﹣ 3 , 故选: D. 点评: 本题考查了有理数比较大小,正数大于 0, 0 大于负数是解题关键. 2.( 3 分) (2019 年河南省 ) 据统计, 2019 年河南省旅游业总收入达到约 3875.5 亿元.若将 3875.5 亿用科学记 数法表示为 3.8755 ×10 n,则 n 等于( ) A. 10 B. 11 C. 12 D. 13 考点: 科学记数法—表示较大的数. 分析: 科学记数法的表示形式为 a×10 n 的形式,其中 1≤|a| < 10, n 为整数.确定 n 的值时,要看把原数变 成 a 时,小数点移动了多少位, n 的绝对值与小数点移动的位数相同.当原数绝对值> 1 时, n 是正数;当原数 的绝对值< 1 时, n 是负数. 解答: 解: 3875.5 亿=3875 5000 0000=3.8755 ×10 11, 故选: B. a×10 n 的形式,其中 1≤|a| < 10, n 为整 点评: 此题考查科学记数法的表示方法.科学记数法的表示形式为 数,表示时关键要正确确定 a 的值以及 n 的值. 3.( 3 分)(2019 年河南省 ) 如图,直线 AB,CD相交于点 O,射线 OM平分∠ AOC, ON⊥OM,若∠ AOM=35°, 则∠ CON 的度数为( ) A. 35° B. 45° C. 55° D . 65° 考点: 垂线;对顶角、邻补角. 分析: 由射线 OM平分∠ AOC, ∠AOM=35°, 得出∠ MOC=35°, 由 ON⊥OM,得出∠ CON=∠MON﹣∠ MOC得出答案. 解答: 解:∵射线 OM平分∠ AOC,∠ AOM=35°, ∴∠ MOC=35°, ∵ON⊥OM, ∴∠ MON=90°, ∴∠ CON=∠MON﹣∠ MOC=90°﹣ 35°=55°. 故选: C. 点评: 本题主要考查了垂线和角平分线,解决本题的关键是找准角的关系. 4.( 3 分) (2019 年河南省 ) 下列各式计算正确的是( ) A. a+2a=3a2 B. (﹣ a3) 2=a6 C. a3?a2=a6 D. ( a+b) 2=a2+b2 考点: 完全平方公式;合并同类项;同底数幂的乘法;幂的乘方与积的乘方. 分析: 根据合并同类项法则,积的乘方,同底数幂的乘法,平方差公式分别求出每个式子的值,再判断即可. 解答: 解: A、 a+2a=3a,故本选项错误; B、(﹣ a3) 2=a6,故本选项正确; C、 a3?a2=a5,故本选项错误; D、( a+b) 2=a2+b2+2ab,故本选项错误,故选 B. 点评: 本题考查了合并同类项法则,积的乘方,同底数幂的乘法,平方差公式的应用,主要考查学生的计算 能力. 5.( 3 分) (2019 年河南省 ) 下列说法中,正确的是( ) A. “打开电视,正在播放河南新闻节目”是必然事件 B. 某种彩票中奖概率为 10%是指买十张一定有一张中奖 C. 神舟飞船反射前需要对零部件进行抽样调查 D. 了解某种节能灯的使用寿命适合抽样调查 考点: 分析: 随机事件;全面调查与抽样调查;概率的意义. 必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确 定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.不易采集到数据的调查要采用抽样调查的方式,据此判断即可. 解答: 解: A.“打开电视,正在播放河南新闻节目”是随机事件,本项错误; B.某种彩票中奖概率为 10%是指买十张可能中奖,也可能不中奖,本项错误; C.神舟飞船反射前需要对零部件进行全面调查,本项错误; D.解某种节能灯的使用寿命,具有破坏性适合抽样调查. 故选: D. 点评: 本题考查了调查的方式和事件的分类.不易采集到数据的调查要采用抽样调查的方式;必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件. 6.( 3 分) (2019 年河南省 ) 将两个长方体如图放置,则所构成的几何体的左视图可能是( ) A. B. C. D. 考点: 分析: 解答: 故选: 点评: 简单组合体的三视图. 根据从左边看得到的图形是左视图,可得答案. 解:从左边看,下面是一个矩形,上面是一个等宽的矩形,该矩形的中间有一条棱, C. 本题考查了简单组合体的三视图,注意能看到的棱用实线画出. 7.( 3 分) (2019 年河南省 ) 如图, ?ABCD的对角线 AC与 BD相交于点 O,AB⊥AC,若 AB=4, AC=6,则 BD的长是 ( ) A. 8 B. 9 C. 10 D. 11 考点: 平行四边形的性质;勾股定理. 分析: 利用平行四边形的性质和勾股定理易求 BO的长,进而可求出 解答: 解:∵ ?ABCD的对角线 AC与 BD相交于点 O, ∴BO=DO, AO=CO, ∵AB⊥AC, AB=4, AC=6, ∴BO= =5, BD的长. ∴ BD=2BO=10, 故选 C. 点评: 本题考查了平行四边形的性质以及勾股定理的运用,是中考常见题型,比较简单. 8.( 3 分) (2019 年河南省 ) 如图,在 Rt△ABC中,∠ C=90°, AC=1cm, BC=2cm,点 P 从点 A 出发,以 1cm/s 的 速度沿折线 AC→CB→BA 运动,最终回到点映 y 与 x 之间函数关系的图象大致是( A,设点 ) P 的运动时间为 x( s),线段 AP 的长度为 y( cm),则能够反 A. B. C. D. 考点: 动点问题的函数图象. 分析: 这是分段函数:①点 P 在 AC边上时, y=x,它的图象是一次函数图象的一部分; ②点 P 在边 BC上时,利用勾股定理求得 y 与 x 的函数关系式,根据关系式选择图象; ③点 P 在边 AB 上时,利用线段间的和差关系求得 y 与 x 的函数关系式,由关系式选择图象. 解答: 解:①当点 P 在 AC边上,即 0≤x≤1 时, y=x ,它的图象是一次函数图象的一部分.故 C错误; ②点 P 在边 BC上,即 1<x≤3 时,根据勾股定理得 AP= ,即 y= ,则其函数图象是 y 随 x 的增大而增大,且不是线段.故 B、 D 错误; ③点 P 在边 AB 上,即 3<x≤3+ 时, y= +3﹣ x=﹣ x+3+ ,其函数图象是直线的一部分. 综上所述, A 选项符合题意. 故选: A. 点评: 本题考查了动点问题的函数图象.此题涉及到了函数 y= 的图象问题,在初中阶段没有 学到该函数图象,所以只要采取排除法进行解题. 二、填空题(每小题 3 分,共 21 分) 9.( 3 分) (2019 年河南省 ) 计算: ﹣| ﹣2|= 1 . 考点: 实数的运算. 分析: 首先计算开方和绝对值,然后再计算有理数的减法即可. 解答: 解:原式 =3﹣ 2=1, 故答案为: 1. 点评: 此题主要考查了实数的运算,关键是掌握立方根和绝对值得性质运算. 10.( 3 分) (2019 年河南省 ) 不等式组 的所有整数解的和为﹣ 2 . 考点: 一元一次不等式组的整数解. 分析: 先分别求出各不等式的解集,再求出其公共解集,在其公共解集内找出符合条件的 x 的所有整数解相 加即可求解. 解答: 解: , 由①得: x≥﹣ 2, 由②得: x<2, ∴﹣ 2≤x< 2, ∴不等式组的整数解为:﹣ 2,﹣ 1, 0, 1. 所有整数解的和为﹣ 2﹣ 1+0+1=﹣ 2. 故答案为:﹣ 2. 点评: 本题考查的是解一元一次不等式组及求一元一次不等式组的整数解,求不等式的公共解,要遵循以下 原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了. 11.( 3 分) (2019 年河南省 ) 如图,在△ ABC 中,按以下步骤作图: ①分别以 B, C 为圆心,以大于 BC的长为半径作弧,两弧相交于 M, N两点; ②作直线 MN交 AB于点 D,连接 CD,若 CD=AC,∠ B=25°,则∠ ACB 的度数为 105° . 考点: 作图—基本作图;线段垂直平分线的性质. 分析: 首先根据题目中的作图方法确定 MN是线段 BC的垂直平分线,然后利用垂直平分线的性质解题即可. 解答: 解:由题中作图方法知道 MN为线段 BC的垂直平分线, ∴CD=BD, ∵∠ B=25°, ∴∠ DCB=∠B=25°, ∴∠ ADC=50°, ∵CD=AC, ∴∠ A=∠ADC=50°, ∴∠ ACD=80°, ∴∠ ACB=∠ACD+∠BCD=80°+25°=105°, 故答案为: 105°. 点评: 本题考查了基本作图中的垂直平分线的作法及线段的垂直平分线的性质,解题的关键是了解垂直平分 线的做法. 12.( 3 分) (2019 年河南省 ) 已知抛物线 y=ax 2+bx+c(a≠0)与 x 轴交于 A,B 两点,若点 A 的坐标为(﹣ 2,0), 抛物线的对称轴为直线 x=2,则线段 AB的长为 8 . 考点: 抛物线与 x 轴的交点. 分析: 由抛物线 y=ax2+bx+c 的对称轴为直线 x=2,交 x 轴于 A、B 两点,其中 A 点的坐标为(﹣ 2, 0),根据 二次函数的对称性,求得 B 点的坐标,再求出 AB的长度. 解答: 解:∵对称轴为直线 x=2 的抛物线 y=ax 2+bx+c (a≠0)与 x 轴相交于 A、 B 两点, ∴A、 B 两点关于直线 x=2 对称, ∵点 A 的坐标为(﹣ 2, 0), ∴点 B 的坐标为( 6, 0), AB=6﹣(﹣ 2) =8. 故答案为: 8. 点评: 此题考查了抛物线与 x 轴的交点.此题难度不大,解题的关键是求出 B 点的坐标. 13.( 3 分) (2019 年河南省 ) 一个不透明的袋子中装有仅颜色不同的 2 个红球和 2 个白球,两个人依次从袋子中 随机摸出一个小球不放回,则第一个人摸到红球且第二个人摸到白球的概率是 . 考点: 列表法与树状图法. 专题: 计算题. 分析: 列表得出所有等可能的情况数,找出第一个人摸到红球且第二个人摸到白球的情况数,即可求出所求的概率. 解答: 解:列表得: 红 红 白 白 红 ﹣﹣﹣ (红,红) (白,红) (白,红) 红 (红,红) ﹣﹣﹣ (白,红) (白,红) 白 (红,白) (红,白) ﹣﹣﹣ (白,白) 白 (红,白) (红,白) (白,白) ﹣﹣﹣ 所有等可能的情况有 12 种,其中第一个人摸到红球且第二个人摸到白球的情况有 4 种, 则 P= =. 故答案为: . 点评: 此题考查了列表法与树状图法,用到的知识点为:概率 =所求情况数与总情况数之比. 14.( 3 分) (2019 年河南省 ) 如图,在菱形 ABCD中, AB=1,∠ DAB=60°,把菱形 ABCD绕点 A顺时针旋转 30°得 到菱形 AB′C′D′,其中点 C的运动路径为 ,则图中阴影部分的面积为 . 考点: 菱形的性质;扇形面积的计算;旋转的性质. 分析: 连接 BD′,过 D′作 D′H⊥AB,则阴影部分的面积可分为 3 部分,再根据菱形的性质,三角形的面积 公式以及扇形的面积公式计算即可. 解答: 解:连接 BD′,过 D′作 D′H⊥AB, ∵在菱形 ABCD中, AB=1,∠ DAB=60°,把菱形 ABCD绕点 A 顺时针旋转 30°得到菱形 AB′C′D′, ∴D′H= , ∴S△ABD′ = 1× = , ∴图中阴影部分的面积为 + ﹣ , 故答案为: + ﹣ . 点评: 本题考查了旋转的性质,菱形的性质,扇形的面积公式,熟练掌握旋转变换只改变图形的位置不改变图形的形状与大小是解题的关键. 15.( 3 分) (2019 年河南省 ) 如图矩形 ABCD中, AD=5, AB=7,点 E 为 DC上一个动点,把△ ADE 沿 AE折叠,当点 D 的对应点 D′落在∠ ABC 的角平分线上时, DE的长为 或 . 考点: 翻折变换(折叠问题) . 分析: 连接 BD′,过 D′作 MN⊥AB,交 出 MD′,再分两种情况利用勾股定理求出 解答: 解:如图,连接 BD′,过 D′作 AB 于点 M, CD于点 DE. MN⊥AB,交 AB 于点 N,作 D′P⊥BC 交 BC于点 P,先利用勾股定理求 M, CD于点 N,作 D′P⊥BC 交 BC于点 P, ∵点 D 的对应点 D′落在∠ ABC 的角平分线上, ∴MD′=PD′, 设 MD′=x,则 PD′=BM=x,∴AM=AB﹣ BM=7﹣ x, 又折叠图形可得 AD=AD′=5, 2 2 ∴x+( 7﹣ x) =25,解得 x=3 或 4, 即 MD′=3 或 4. 在 RT△END′中,设 ED′=a, ①当 MD′=3 时, D′E=5﹣ 3=2, EN=7﹣ CN﹣DE=7﹣ 3﹣ a=4﹣ a, 2 2 2 , ∴a=2 +( 4﹣ a) 解得 a= ,即 DE= , ②当 MD′=4 时, D′E=5﹣ 4=1, EN=7﹣ CN﹣DE=7﹣ 4﹣ a=3﹣ a, 2 2 2 , ∴a=1 +( 3﹣ a) 解得 a= ,即 DE= . 故答案为: 或 . 点评: 本题主要考查了折叠问题,解题的关键是明确掌握折叠以后有哪些线段是对应相等的. 三、解答题(本大题共 8 小题,满分 75 分) 16.( 8 分) (2019 年河南省 ) 先化简,再求值: +( 2+ ),其中 x= ﹣ 1. 考点: 专题: 分式的化简求值. 计算题. 分析: 先把括号内通分,再把除法运算化为乘法运算,然后把分子分母因式分解,约分后得到原式 = ,再 把 x 的值代入计算. 解答: 解:原式 = ÷ = ÷ = ? = , 当 x= ﹣ 1 时,原式 = = . 点评: 本题考查了分式的化简求值:先把分式的分子或分母因式分解,再进行通分或约分,得到最简分式或 整式,然后把满足条件的字母的值代入计算得到对应的分式的值. 17.( 9 分) (2019 年河南省 ) 如图, CD是⊙O 的直径,且 CD=2cm,点 切线 PA, PB,切点分别为点 A, B. ( 1)连接 AC,若∠ APO=30°,试证明△ ACP 是等腰三角形; ( 2)填空: P 为 CD的延长线上一点,过点 P 作⊙O的 ①当 DP= 1 cm 时,四边形 AOBD是菱形; ②当 DP= ﹣ 1 cm时,四边形 AOBD是正方形. 考点: 切线的性质;等腰三角形的判定;菱形的判定;正方形的判定. 分析: ( 1)利用切线的性质可得 OC⊥PC.利用同弧所对的圆周角等于圆心角的一半,求得∠ ACP=30°,从而求得. ( 2)①要使四边形 AOBD是菱形,则 OA=AD=OD,所以∠ AOP=60°,所以 OP=2OA,DP=OD.②要使四边形 AOBD是正方形,则必须∠ AOP=45°, OA=PA=1,则 OP= ,所以 DP=OP﹣ 1. 解答: 解:( 1)连接 OA, AC ∵PA 是⊙O的切线, ∴OA⊥PA, 在 RT△AOP中,∠ AOP=90°﹣∠ APO=90°﹣ 30°=60°, ∴∠ ACP=30°, ∵∠ APO=30° ∴∠ ACP=∠APO, ∴ AC=AP, ∴△ ACP是等腰三角形. ( 2)① 1, ② . 点评: 本题考查了切线的性质,圆周角的性质,熟练掌握圆的切线的性质和直角三角形的边角关系是解题的关键. 18.( 9 分) (2019 年河南省 ) 某兴趣小组为了了解本校男生参加课外体育锻炼情况,随机抽取本校 300 名男生进 行了问卷调查,统计整理并绘制了如下两幅尚不完整的统计图. 请根据以上信息解答下列问题: ( 1)课外体育锻炼情况扇形统计图中,“经常参加”所对应的圆心角的度数为 144° ; ( 2)请补全条形统计图; ( 3)该校共有 1200 名男生,请估计全校男生中经常参加课外体育锻炼并且最喜欢的项目是篮球的人数; ( 4)小明认为“全校所有男生中,课外最喜欢参加的运动项目是乒乓球的人数约为1200×=108”,请你判 断这种说法是否正确,并说明理由. 考点: 条形统计图;用样本估计总体;扇形统计图. 专题: 图表型. 分析: ( 1)用“经常参加”所占的百分比乘以 360°计算即可得解; ( 2)先求出“经常参加”的人数,然后求出喜欢篮球的人数,再补全统计图即可; ( 3)用总人数乘以喜欢篮球的学生所占的百分比计算即可得解; ( 4)根据喜欢乒乓球的 27 人都是“经常参加”的学生,“偶尔参加”的学生中也会有喜欢乒乓球的考虑解答. 解答: 解:( 1)360°×( 1﹣ 15%﹣ 45%)=360°× 40%=144°; 故答案为: 144°; ( 2)“经常参加”的人数为: 300×40%=120 人, 喜欢篮球的学生人数为: 120﹣ 27﹣33﹣ 20=120 ﹣ 80=40 人;补全统计图如图所示; ( 3)全校男生中经常参加课外体育锻炼并且最喜欢的项目是篮球的人数约为:1200× =160 人; ( 4)这个说法不正确. 理由如下:小明得到的 108 人是经常参加课外体育锻炼的男生中最喜欢的项目是乒乓球的人数,而全校偶尔参加课外体育锻炼的男生中也会有最喜欢乒乓球的, 因此应多于 108 人. 点评: 本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小. 19.(9 分) (2019 年河南省 ) 在中俄“海上联合﹣ 2018”反潜演习中,我军舰 A 测得潜艇 军舰 A 正上方 1000 米的反潜直升机 B 测得潜艇 C 的俯角为 68°,试根据以上数据求出潜艇 深度.(结果保留整数,参考数据: sin68 °≈ 0.9 ,cos68°≈ 0.4 ,tan68 °≈ 2.5 , C 的俯角为 30°,位于 C 离开海平面的下潜 1.7 ) 考点: 解直角三角形的应用 - 仰角俯角问题. 分析: 过点 C 作 CD⊥AB,交 BA的延长线于点 D,则 AD即为潜艇 C 的下潜深度,分别在 Rt 三角形 ACD中表示 出 CD和在 Rt 三角形 BCD中表示出 BD,从而利用二者之间的关系列出方程求解. 解答: 解:过点 C作 CD⊥AB,交 BA的延长线于点 D,则 AD即为潜艇 C的下潜深度, 根据题意得:∠ ACD=30°,∠ BCD=65°, 设 AD=x,则 BD=BA+AD=1000+x, 在 Rt 三角形 ACD中, CD= = = , 在 Rt 三角形 BCD中, BD=CD?tan68°, ∴1000+x= x?tan68 ° 解得: x= = ≈308 米, ∴潜艇 C 离开海平面的下潜深度为 308 米. 点评: 本题考查了解直角三角形的应用,解题的关键是从题目中抽象出直角三角形并选择合适的边角关系求 解. 20.( 9 分) (2019 年河南省 ) 如图,在直角梯形 OABC中, BC∥AO,∠ AOC=90°,点 A,B 的坐标分别为( 5,0), ( 2, 6),点 D 为 AB上一点,且 BD=2AD,双曲线 y= ( k>0)经过点 D,交 BC于点 E. ( 1)求双曲线的解析式; ( 2)求四边形 ODBE的面积. 考点: 反比例函数综合题. 专题: 综合题. 分析: ( 1)作 BM⊥x轴于 M,作 BN⊥x轴于 N,利用点 A,B 的坐标得到 BC=OM=5, BM=OC=6, AM=3,再证明 △ADN∽△ ABM,利用相似比可计算出 DN=2,AN=1,则 ON=OA﹣ AN=4,得到 D 点坐标为( 4, 2),然后把 D点坐标 代入 y= 中求出 k 的值即可得到反比例函数解析式; ( 2)根据反比例函数 k 的几何意义和 S 四边形 =S ﹣ S ﹣S 进行计算. ODBE 梯形 OABC△OCE△OAD 解答: 解:( 1)作 BM⊥x轴于 M,作 BN⊥x轴于 N,如图, ∵点 A, B 的坐标分别为( 5, 0),( 2,6), ∴BC=OM=5, BM=OC=6, AM=3, ∵DN∥BM, ∴△ ADN∽△ ABM, ∴ = = ,即 = = , ∴ DN=2, AN=1, ∴ON=OA﹣ AN=4, ∴D点坐标为( 4, 2), 把 D( 4, 2)代入 y= 得 k=2×4=8, ∴反比例函数解析式为 y= ; ( 2) S 四边形 ODBE=S 梯形 OABC﹣ S△OCE﹣ S△OAD = ×( 2+5)× 6﹣ ×|8| ﹣ ×5×2 =12. 点评: 本题考查了反比例函数综合题:熟练掌握反比例函数图象上点的坐标特征、反比例函数 k 的几何意义 和梯形的性质;理解坐标与图形的性质;会运用相似比计算线段的长度. 21.( 10 分) (2019 年河南省 ) 某商店销售 10 台 A 型和 20 台 B 型电脑的利润为 4000 元,销售 20 台 A 型和 10 台 B 型电脑的利润为 3500 元. ( 1)求每台 A 型电脑和 B型电脑的销售利润; ( 2)该商店计划一次购进两种型号的电脑共 100 台,其中 B 型电脑的进货量不超过 A 型电脑的 2 倍,设购进 A 型电脑 x 台,这 100 台电脑的销售总利润为 y 元. ①求 y 关于 x 的函数关系式; ②该商店购进 A 型、 B 型电脑各多少台,才能使销售总利润最大? ( 3)实际进货时,厂家对 A 型电脑出厂价下调 m(0< m< 100)元,且限定商店最多购进 A 型电脑 70 台,若商 店保持同种电脑的售价不变,请你根据以上信息及( 2)中条件,设计出使这 100 台电脑销售总利润最大的进货 方案. 考点: 一次函数的应用;二元一次方程组的应用;一元一次不等式组的应用. 分析: ( 1)设每台 A 型电脑销售利润为 x 元,每台 B 型电脑的销售利润为 y 元;根据题意列出方程组求解, ( 2)①据题意得, y=﹣ 50x+15000, ②利用不等式求出 x 的范围,又因为 y=﹣ 50x+15000 是减函数,所以 x 取 34, y 取最大值, ( 3)据题意得, y=( 100+m)x﹣ 150( 100﹣ x),即 y=( m﹣50) x+15000,分三种情况讨论,①当 0< m<50 时, y 随 x 的增大而减小,② m=50 时, m﹣50=0, y=15000 ,③当 50< m< 100 时, m﹣ 50>0, y 随 x 的增大而增大,分别进行求解. 解答: 解:( 1)设每台 A 型电脑销售利润为 x 元,每台 B 型电脑的销售利润为 y 元;根据题意得 解得 答:每台 A 型电脑销售利润为 100 元,每台 B 型电脑的销售利润为 150 元. ( 2)①据题意得, y=100x﹣ 150( 100﹣ x),即 y=﹣50x+15000 , ②据题意得, 100﹣x≤2x,解得 x≥33 , ∵ y=﹣ 50x+15000, ∴y随 x 的增大而减小, ∵x为正整数, ∴当 x=34 时, y 取最大值,则 100﹣ x=66, 即商店购进 34 台 A 型电脑和 66 台 B 型电脑的销售利润最大. ( 3)据题意得, y=( 100+m) x﹣ 150(100﹣ x),即 y=( m﹣ 50) x+15000, 33 ≤x≤70 ①当 0< m<50 时, y 随 x 的增大而减小, ∴当 x=34 时, y 取最大值, 即商店购进 34 台 A 型电脑和 66 台 B 型电脑的销售利润最大. ② m=50 时, m﹣ 50=0, y=15000, 即商店购进 A 型电脑数量满足 33 ≤x≤70 的整数时,均获得最大利润; ③当 50< m< 100 时, m﹣50> 0, y 随 x 的增大而增大, ∴当 x=70 时, y 取得最大值. 即商店购进 70 台 A 型电脑和 30 台 B 型电脑的销售利润最大. 点评: 本题主要考查了一次函数的应用,二元一次方程组及一元一次不等式的应用,解题的关键是根据一次 函数 x 值的增大而确定 y 值的增减情况. 22.( 10 分) (2019 年河南省 ) ( 1)问题发现 如图 1,△ ACB和△ DCE均为等边三角形,点 A, D,E 在同一直线上,连接 BE. 填空: ①∠ AEB 的度数为 60° ; ②线段 AD,BE 之间的数量关系为 AD=BE . ( 2)拓展探究 如图 2,△ ACB和△ DCE均为等腰直角三角形,∠ ACB=∠DCE=90°,点 A, D,E 在同一直线上, CM为△ DCE中 DE 边上的高,连接 BE,请判断∠ AEB 的度数及线段 CM, AE, BE 之间的数量关系,并说明理由. ( 3)解决问题 如图 3,在正方形 ABCD中, CD= ,若点 P 满足 PD=1,且∠ BPD=90°,请直接写出点 A 到 BP的距离. 考点: 圆的综合题;全等三角形的判定与性质;等腰三角形的性质;等边三角形的性质;直角三角形斜边上的中线;正方形的性质;圆周角定理. 专题: 综合题;探究型. 分析: ( 1)由条件易证△ ACD≌△ BCE,从而得到: AD=BE,∠ ADC=∠BEC.由点 A,D, E 在同一直线上可求出 ∠ADC,从而可以求出∠ AEB 的度数. ( 2)仿照( 1)中的解法可求出∠ AEB 的度数,证出 AD=BE;由△ DCE为等腰直角三角形及 CM为△ DCE中 DE边 上的高可得 CM=DM=ME,从而证到 AE=2CH+BE. ( 3)由 PD=1可得:点 P 在以点 D 为圆心, 1 为半径的圆上; 由∠ BPD=90°可得: 点 P 在以 BD为直径的圆上. 显然,点 P 是这两个圆的交点,由于两圆有两个交点,接下来需对两个位置分别进行讨论.然后,添加适当的辅 助线,借助于( 2)中的结论即可解决问题. 解答: 解:( 1)①如图 1, ∵△ ACB和△ DCE均为等边三角形, ∴CA=CB, CD=CE,∠ ACB=∠DCE=90°. ∴∠ ACD=∠BCE. 在△ ACD和△ BCE中, ∴△ ACD≌△ BCE. ∴∠ ADC=∠BEC. ∵△ DCE为等边三角形, ∴∠ CDE=∠CED=60°. ∵点 A, D,E 在同一直线上, ∴∠ ADC=120°. ∴∠ BEC=120°. ∴∠ AEB=∠BEC﹣∠ CED=60°. 故答案为: 60°. ②∵△ ACD≌△ BCE, ∴ AD=BE. 故答案为: AD=BE. ( 2)∠ AEB=90°, AE=BE+2CM. 理由:如图 2, ∵△ ACB和△ DCE均为等腰直角三角形,∴CA=CB, CD=CE,∠ ACB=∠DCE=90°. ∴∠ ACD=∠BCE. 在△ ACD和△ BCE中, ∴△- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- word解析版 河南省 2019 年中 数学试题 答案 word 解析
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【人****来】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【人****来】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【人****来】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【人****来】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文