-八年级数学上册一次函数与反比例函数的综合应用练习人教新课标版范文.doc
《-八年级数学上册一次函数与反比例函数的综合应用练习人教新课标版范文.doc》由会员分享,可在线阅读,更多相关《-八年级数学上册一次函数与反比例函数的综合应用练习人教新课标版范文.doc(18页珍藏版)》请在咨信网上搜索。
反比例函数的实际应用,一次函数与反比例函数的综合应用 一、选择题 1. (2008佳木斯市)用电器的输出功率与通过的电流、用电器的电阻之间的关系是,下面说法正确的是( ) A.为定值,与成反比例 B.为定值,与成反比例 C.为定值,与成正比例 D.为定值,与成正比例 2、(2008襄樊市)在一个可以改变体积的密闭容器内装有一定质量的二氧化碳,当改变容器的体积时,气体的密度也会随之改变,密度(单位:kg/m3)是体积(单位:m3)的反比例函数,它的图象如图3所示,当时,气体的密度是( ) A.5kg/m3 B.2kg/m3 C.100kg/m3 D,1kg/m3 3、(2008恩施自治州)如图5,一次函数y=x-1与反比例函数y=的图像交于点A(2,1),B(-1,-2),则使y>y的x的取值范围是 A. x>2 B. x>2 或-1<x<0 C. -1<x<2 D. x>2 或x<-1 4、(2008泰安市)函数的图象如图所示,下列对该函数性质的论断不可能正确的是( ) A.该函数的图象是中心对称图形 B.当时,该函数在时取得最小值2 C.在每个象限内,的值随值的增大而减小 D.的值不可能为1 5. (2008山东省济南市)如图:等腰直角三角形ABC位于第一象限,AB=AC=2,直角顶点A在直线y=x上,其中A点的横坐标为1,且两条直角边AB、AC分别平行于x轴、y轴,若双曲线y= (k≠0)与△ABC有交点,则k的取值范围是( ) A.1<k<2 B.1≤k≤3 C.1≤k≤4 D.1≤k<4 6.(2008山东省青岛市)如果点A(x,y)和点B(x,y)是直线y=kx-b上的两点,且当x <x时,y < y,那么函数y=的图象大致是( ) 7、(2008山西省)如图,第四象限的角平分线OM与反比例函数的图象交于点A,已知OA=,则该函数的解析式为 ( ) A. B. C. D. 8、(2008潍坊市)已知反比例函数,当时,随的增大而增大,则关于的方程的根的情况是( ) A.有两个正根 B.有两个负根 C.有一个正根一个负根 D.没有实数根 9、(2008广东湛江市)已知三角形的面积一定,则它底边上的高与底边之间的函数关系的图象大致是( ) 10、 (2008益阳) 物理学知识告诉我们,一个物体所受到的压强P与所受压力F及受力面积S之间的计算公式为. 当一个物体所受压力为定值时,那么该物体所受压强P与受力面积S之间的关系用图象表示大致为 11、(2008襄樊市)在一个可以改变体积的密闭容器内装有一定质量的二氧化碳,当改变容器的体积时,气体的密度也会随之改变,密度(单位:kg/m3)是体积(单位:m3)的反比例函数,它的图象如图3所示,当时,气体的密度是( ) A.5kg/m3 B.2kg/m3 C.100kg/m3 D,1kg/m3 12、(2008恩施自治州)如右图,一次函数y=x-1与反比例函数y=的图像交于点A(2,1),B(-1,-2),则使y>y的x的取值范围是( ) A. x>2 B. x>2 或-1<x<0 C. -1<x<2 D. x>2 或x<-1 13、(2008丽水)已知反比例函数的图象如图所示,则一次函数的图象经过( ) A. 一、二、三象限 B.二、三、四象限 C.一、二、四象限 D.一、三、四象限 14、(2008福建南平)如右图,正比例函数与反比例函数的图象相交于两点,过点作轴的垂线交轴于点, 连接,则的面积等于( ) A.2 B.4 C.6 D.8 15、(2008呼和浩特) 已知二次函数 的图象如图(1)所示,则直线与反比例函数, 在同一坐标系内的大致图象为( ) 16、(2008包头)已知反比例函数的图像与一次函数的图像交于A、B两点,那么△AOB的面积是( ) A.2 B.3 C.4 D.6 二、填空题 1、(2008遵义市)如图,在平面直角坐标系中,函数(,常数)的图象经过点,,(),过点作轴的垂线,垂足为.若的面积为2,则点的坐标为 . 2、(2008宁德)蓄电池电压为定值,使用此电源时, 电流I(安)与电阻R(欧)之间关系图象如图所示, 若点P在图象上,则I与R(R>0)的函数关系式 是______________. 3、(2008内蒙古赤峰市)如图,一块长方体大理石板的三个面上的边长如图所示,如果大理石板的面向下放在地上时地面所受压强为帕,则把大理石板面向下放在地下上,地面所受压强是 帕. 4、(2008福建福州)如图,在反比例函数()的图象上,有点,它们的横坐标依次为1,2,3,4.分别过这些点作轴与轴的垂线,图中所构成的阴影部分的面积从左到右依次为,则 . 5、(2008河南试验区)如图,直线(>0)与双曲线在第一象限内的交点面积为R,与轴的交点为P,与轴的交点为Q;作RM⊥轴于点M,若△OPQ与△PRM的面积是4:1,则 6、(2008甘肃省兰州市)如图,已知双曲线()经过矩形的边的中点,且四边形的面积为2,则 . 7、(2008梅州)已知直线与双曲线的一个交点A的坐标为(-1,-2).则=_____;=____;它们的另一个交点坐标是______. 8、(2008常州市) 过反比例函数的图象上的一点分别作x、y轴的垂线段,如果垂线段与x、y轴所围成的矩形面积是6,那么该函数的表达式是______;若点A(-3,m)在这个反比例函数的图象上,则m=______. 9、(2008衢州)已知n是正整数,(,)是反比例函数图象上的一列点,其中,,…,,记,,…,;若,则的值是_________; 10、(2008湖北省宜昌市)某物体对地面的压力为定值,物体对地面的压强p(Pa)与受力面积S(㎡)之间的函数关系如图所示.这一函数表达式为p=________. 11、(2008武汉市)如图,半径为5的⊙P与轴交于点M(0,-4),N(0,-10),函数的图像过点P,则= . 12、(2008西宁市) 如图所示的是函数与的图象,求方程组的解关于原点对称的点的坐标是 ;在平面直角坐标系中,将点向左平移6个单位,再向下平移1个单位,恰好在函数的图象上,则此函数的图象分布在第 象限. 13、(2008湖北省咸宁市)两个反比例函数和在第一象限内的图象如图所示,点P在的图象上,PC⊥x轴于点C,交的图象于点A,PD⊥y轴于点D,交的图象于点B,当点P在的图象上运动时,以下结论: ①△ODB与△OCA的面积相等; ②四边形PAOB的面积不会发生变化;③PA与PB始终相等; ④当点A是PC的中点时,点B一定是PD的中点. 其中一定正确的是 (把你认为正确结论的序号都填上,少填或错填不给分). 14、(2008荆州市)如图,一次函数的图象分别交x轴、y轴于A、B,P为AB上一点且PC为△AOB的中位线,PC的延长线交反比例函数的图象于Q,,则k的值和Q点的坐标分别为_________________________. 15、(2008宜宾市)若正方形AOBC的边OA、OB在坐标轴上,顶点C在第一象限且在反比例函数y=的图像上,则点C的坐标是 16、(2008深圳市)如图,直线OA与反比例函数的图象在第一象限交于A点,AB⊥x轴于点B,△OAB的面积为2,则k= 17(2008芜湖市)在平面直角坐标系中,直线向上平移1个单位长度得到直线.直线与反比例函数的图象的一个交点为,则的值等于 . 18.(08巴中市)如图8,若点在反比例函数的图象上,轴于点,的面积为3,则 . 三、解答题 1、(2008达州市)平行于直线的直线不经过第四象限,且与函数和图象交于点,过点作轴于点,轴于点,四边形的周长为8.求直线的解析式. 2. (2008 杭州市) 为了预防流感,某学校在休息天用药熏消毒法对教室进行消毒.已知药物释放过程中,室内每立方米空气中的含药量(毫克)与时间(小时)成正比;药物释放完毕后,与的函数关系式为(为常数),如图所示.据图中提供的信息,解答下列问题: (1) 写出从药物释放开始,与之间的两个函数关系式及相应的自变量的取值范围; (2)据测定,当空气中每立方米的含药量降低到毫克以下时,学生方可进入教室,那么从药物释放开始,至少需要经过多少小时后,学生才能进入教室? 3、(2008贵阳市)利用图象解一元二次方程时,我们采用的一种方法是:在平面直角坐标系中画出抛物线和直线,两图象交点的横坐标就是该方程的解. (1)填空:利用图象解一元二次方程,也可以这样求解:在平面直角坐标系中画出抛物线 和直线,其交点的横坐标就是该方程的解. (2)已知函数的图象(如图9所示),利用图象求方程的近似解(结果保留两个有效数字). 5、(2008郴州市)已知一次函数y=ax+b的图像与反比例函数 的图像交于A(2,2),B(-1,m),求一次函数的解析式. 6、(2008甘肃省兰州市)已知正比例函数的图象与反比例函数(为常数,)的图象有一个交点的横坐标是2. (1)求两个函数图象的交点坐标; (2)若点,是反比例函数图象上的两点,且,试比较的大小. 7、(2008四川乐山)题乙:图(14)是反比例函数的图象,当-4≤x≤-1时,-4≤y≤-1 (1) (1) 求该反比例函数的解析式 (2) 若M、N分别在反比例函数图象的两支上,请指出什么情况下线段MN最短(不需证明),并求出线段MN长度的取值范围 8、(2008聊城市)已知一次函数与反比例函数的图象交于点. (1)求这两个函数的函数关系式; (2)在给定的直角坐标系(如图)中,画出这两个函数的大致图象; (3)当为何值时,一次函数的值大于反比例函数的值?当为何值时,一次函数的值小于反比例函数的值? 9、 (2008内江市) 如图,一次函数的图象经过第一、二、三象限,且与反比例函数图象相交于两点,与轴交于点,与轴交于点,.且点横坐标是点纵坐标的2倍. (1)求反比例函数的解析式; (2)设点横坐标为,面积为, 求与的函数关系式,并求出自变量的取值范围. 10、(2008山西省太原市)人的视觉机能受运动速度的影响很大,行驶中司机在驾驶室内观察前方物体时是动态的,车速增加,视野变窄.当车速为50km/h时,视野为80度.如果视野(度)是车速(km/h)的反比例函数,求之间的关系式,并计算当车速为100km/h时视野的度数. 11(2008云南省)已知,在同一直角坐标系中,反比例函数与二次函数的图像交于点. (1)求、的值; (2)求二次函数图像的对称轴和顶点坐标. 12(2008苏州)如图,帆船和帆船在太湖湖面上训练,为湖面上的一个定点,教练船静候于点.训练时要求两船始终关于点对称.以为原点,建立如图所示的坐标系,轴,轴的正方向分别表示正东、正北方向.设两船可近似看成在双曲线上运动.湖面风平浪静,双帆远影优美.训练中当教练船与两船恰好在直线上时,三船同时发现湖面上有一遇险的船,此时教练船测得船在东南方向上,船测得与的夹角为,船也同时测得船的位置(假设船位置不再改变,三船可分别用三点表示). (1)发现船时,三船所在位置的坐标分别为和; (2)发现船,三船立即停止训练,并分别从三点出发船沿最短路线同时前往救援,设两船的速度相等,教练船与船的速度之比为,问教练船是否最先赶到?请说明理由. 13(2008四川省资阳市)若一次函数y=2x-1和反比例函数y=的图象都经过点(1,1). (1)求反比例函数的解析式; (2)已知点A在第三象限,且同时在两个函数的图象上,求点A的坐标; (3)利用(2)的结果,若点B的坐标为(2,0),且以点A、O、B、P为顶点的四边形是平行四边形,请你直接写出点P的坐标.· 14.(2008江苏省宿迁)如图,已知反比例函数的图象与一次函数的图象交于、两点,. (1)求反比例函数和一次函数的关系式; (2)在直线上是否存在一点,使∽,若存在,求点坐标;若不存在,请说明理由. 15、(2008泰州市)已知二次函数y1=ax2+bx+c(a≠0)的图像经过三点(1,0),(-3,0),(0,-). (1)求二次函数的解析式,并在给定的直角坐标系中作出这个函数的图像; (2)若反比例函数y2=(x>0)的图像与二次函数y1=ax2+bx+c(a≠0)的图像在第一象限内交于点A(x0,y0),x0落在两个相邻的正整数之间,请你观察图像,写出这两个相邻的正整数; (3)若反比例函数y2=(x>0,k>0)的图像与二次函数y1=ax2+bx+c(a≠0)的图像在第一象限内的交点A,点A的横坐标x0满足2<x0<3,试求实数k的取值范围. 图 16、(2008威海市)如图,点A(m,m+1),B(m+3,m-1)都在反比例函数的图象上. (1)求m,k的值; (2)如果M为x轴上一点,N为y轴上一点, 以点A,B,M,N为顶点的四边形是平行四边形, 试求直线MN的函数表达式. 17、(2008盐城)阅读理解:对于任意正实数a、b,∵≥0, ∴≥0, ∴≥,只有当a=b时,等号成立. 结论:在≥(a、b均为正实数)中,若ab为定值p,则a+b≥,只有当a=b时,a+b有最小值. 根据上述内容,回答下列问题: 若m>0,只有当m= ▲ 时, ▲ . 思考验证:如图1,AB为半圆O的直径,C为半圆上任意一点(与点A、B不重合),过点C作CD⊥AB,垂足为D,AD=a,DB=b.试根据图形验证≥,并指出等号成立时的条件. 探索应用:如图2,已知A(-3,0),B(0,-4),P为双曲线(x>0)上的任意一点,过点P作PC⊥x轴于点C,PD⊥y轴于点D.求四边形ABCD面积的最小值,并说明此时四边形ABCD的形状. 18、(2008义乌市)已知:等腰三角形OAB在直角坐标系中的位置如图,点A的坐标为(),点B的坐标为(-6,0). (1)若三角形OAB关于y轴的轴对称图形是三角形O,请直接写出A、B的对称点的坐标; (2)若将三角形沿x轴向右平移a个单位,此时点A恰好落在反比例函数的图像上,求a的值; (3)若三角形绕点O按逆时针方向旋转度(). ①当=时点B恰好落在反比例函数的图像上,求k的值. ②问点A、B能否同时落在①中的反比例函数的图像上,若能,求出 的值;若不能,请说明理由. 19、(2008永州)如图,已知⊙O的直径AB=2,直线m与⊙O相切于点A,P为⊙O上一动点(与点A、点B不重合),PO的延长线与⊙O相交于点C,过点C的切线与直线m相交于点D. (1)求证:△APC∽△COD. (2)设AP=x,OD=y,试用含x的代数式表示y. (3)试探索x为何值时,△ACD是一个等边三角形. 20、(2008肇庆市)已知点A(2,6)、B(3,4)在某个反比例函数的图象上. (1) 求此反比例函数的解析式; (2)若直线与线段AB相交,求m的取值范围. 21、(2008重庆市)已知:如图,反比例函数的图象经过点A、B,点A的坐标为(1,3),点B的纵坐标为1,点C的坐标为(2,0). (1)求该反比例函数的解析式; (2)求直线BC的解析式. 22、(2008巴中市)为预防“手足口病”,某校对教室进行“药熏消毒”.已知药物燃烧阶段,室内每立方米空气中的含药量(mg)与燃烧时间(分钟)成正比例;燃烧后,与成反比例(如图所示).现测得药物10分钟燃完,此时教室内每立方米空气含药量为8mg.据以上信息解答下列问题: (1)求药物燃烧时与的函数关系式. (2)求药物燃烧后与的函数关系式. (3)当每立方米空气中含药量低于1.6mg时,对人体方能无毒害作用,那么从消毒开始,经多长时间学生才可以回教室? 23、(2008金华市)如图1,已知双曲线与直线交于A,B两点,点A在第一象限.试解答下列问题: (1)若点A的坐标为(4,2),则点B的坐标为 ▲ ;若点A的横坐标为m, 则点B的坐标可表示为 ▲ ; (2)如图2,过原点O作另一条直线l,交双曲线于P,Q两点,点P在第一象限. ①说明四边形APBQ一定是平行四边形; ②设点A,P的横坐标分别为m,n, 四边形APBQ可能是矩形吗? 可能是正方形吗?若可能, 直接写出m,n应满足的条件;若不 可能,请说明理由. 24、(2008东营、莱芜市)(1)探究新知: 如图1,已知△ABC与△ABD的面积相等,试判断AB与CD的位置关系,并说明理由. (2)结论应用: ① 如图2,点M,N在反比例函数(k>0)的图象上,过点M作ME⊥y轴,过点N作NF⊥x轴,垂足分别为E,F. 试证明:MN∥EF. ② 若①中的其他条件不变,只改变点M,N 的位置如图3所示,请判断 MN与EF是否平行. 25、(2008四川绵阳)本题满分12分)已知如图,点A(m,3)与点B(n,2)关于直线y = x对称,且都在反比例函数 的图象上,点D的坐标为(0,-2). (1)求反比例函数的解析式; (2)若过B、D的直线与x轴交于点C,求sin∠DCO的值. 26、(2008年浙江省台州市)如图,一次函数的图象与反比例函数的图象交于两点,直线分别交轴、轴于两点. (1)求上述反比例函数和一次函数的解析式; (2)求的值. 27、(2008福建泉州)已知反比例函数(k为常数,k≠0)的图象经过P(3,3),O为坐标原点。 (1)求k的值; (2)过点P作PM⊥x轴于M,若点Q在反比例函数图象上,并且,试求Q点的坐标。 28、(2008呼和浩特)如图正方形OABC的面积为4,点O为坐标原点,点B在函数 的图象上,点P(m,n)是函数的图象上异于B的任意一点,过点P分别作x轴、y轴的垂线,垂足分别为E、F. (1)设矩形OEPF的面积为Sl,判断Sl与点P的位置是否有关(不必说理由). (2)从矩形OEPF的面积中减去其与正方形OABC重合的面积,剩余面积记为S2,写出S2与m的函数关系,并标明m的取值范围. 29、(2008安顺) 如图11,一次函数的图象与反比例函数的图象交于A(-4,2)、B(2,n)两点,且与x轴交于点C。 (1)试确定上述反比例函数和一次函数的表达式; (2)求△AOB的面积; (3)根据图象写出一次函数的值小于反比例函数的值x的取值范围。 30、(2008甘肃甘南)如图,反比例函数的图像与一次函数的图像交于A(1,4)、B(a,-1)两点. (1)求反比例函数与一次函数的解析式; (2)根据图像回答:当x取何值时,反比例函数的值不大于一次函数的值. 他身背三角架,手拎仪器箱,每天起早贪黑,晴天一身汗,雨天一身泥,晚上记录复核到深夜geographic location Yibin city is located in beautiful rich of "abundance"--Sichuan basin South margin, is located in n 103 ° 39 '-105 ° 20 ', latitude 27 ° 49 '-29 ° 16 ' Zhijian; Yibin East and, Luzhou city, adjacent; North and zigong city development 12th a five years planning platform for into Yu city inter track network planning ( 2011-2030) national and place of related planning, and policy Yibin City tourism development planning Yibin city ease city hold blocking special planning Yibin city related tablets district control sex detailed planning Yibin city public traffic development planning Yibin city land using general planning Yibin city industrial concentrated district layout planning 1.4 planning background Yibin city in sands River, and minjiang River and Yangtze River of Sanjiang intersection at, is China famous of "wine are", belongs to chuan, and Yunnan, and Guizhou three province combined Department area, known as " Yangtze River City, "said, is" in panxi-liupanshui "important part of the resource-rich region. In the new master plan, as the national historical and cultural city in Yibin city, China, Department of Sichuan-Yunnan-Guizhou-based regional center in the upper reaches Counties are: Yibin, and Jiang ' an, and changning County, and Gao Pingshan County, xingwen junlian, and Gong, and, and, and. 2.1-2 administrative map of Yibin, Yibin city, end of 2014 the city's total population of 5.5429 million people, resident population of 825,000 people in the Center. 2.1.3 social economic development in Yibin city, 2014 to achieve GDP of 144.381 billion yuan, an increase of 8%, keeping the total province-4th place; local public budget income of 10.56 billion yuan, ranking 4th place, above-scale industrial added value of 78.716 billion yuan, ranking 3rd in social retail sales of consumer goods totaled 56.169 billion yuan, ranking 4th in 24990 Yuan of disposable income per capita of urban residents, per capita net income of farmers 9831, Share 123 14.5:60.0:25.5. Wine-making industry,17- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 完整 word 八年 级数 上册 一次 函数 反比例 综合 应用 练习 新课 范文
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【天****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【天****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【天****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【天****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文