知识点梳理.docx
《知识点梳理.docx》由会员分享,可在线阅读,更多相关《知识点梳理.docx(21页珍藏版)》请在咨信网上搜索。
第一单元分数加减法 一、分数的意义 1、分数的意义:把单位“1”平均分成若干份,表示这样的一份或几份的数,叫做分数。 2、分数单位:把单位“1”平均分成若干份,表示这样的一份的数叫做分数单位。 二、分数与除法的关系,真分数和假分数 1、分数与除法的关系:除法中的被除数相当于分数的分子,除数相等于分母。 2、真分数和假分数: ① 分子比分母小的分数叫做真分数,真分数小于1。 ② 分子比分母大或分子和分母相等的分数叫做假分数,假分数大于1或等于1。 ③ 由整数部分和分数部分组成的分数叫做带分数。 3、假分数与带分数的互化: ① 把假分数化成带分数,用分子除以分母,所得商作整数部分,余数作分子,分母不变。 ② 把带分数化成假分数,用整数部分乘以分母加上分子作分子,分母不变。 三、分数的基本质 分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变,这叫做分数的基本性质。 四、分数的大小比较 ①同分母分数,分子大的分数就大,分子小的分数就小; ② 同分子分数,分母大的分数反而小,分母小的分数反而大。 ③ 异分母分数,先化成同分母分数(分数单位相同),再进行比较。(依据分数的基本性质进行变化) 五、约分(最简分数) 1、最简分数:分子和分母只有公因数1的分数叫做最简分数。 2、约分:把一个分数化成和它相等,但分子和分母都比较小的分数,叫做约分。 (并不是一定要把分数化成与它相等的最简分数才叫约分;但一般要约到最简分数为止) 注意:分数加减法中,计算结果能约分的,一般要约分成最简分数。 六、分数和小数的互化: 1、小数化分数:将小数化成分母是10、100、1000…的分数,能约分的要约分。具体是:看有几位小数,就在1后边写几个0做分母,把小数点去掉的部分做分子,能约分的要约分。 2、分数化小数:用分子除以分母,除不尽的按要求保留几位小数。(一般保留三位小数。) 如果分母只含有2或5的质因数,这个分数能化成有限小数。如果含有2或5以外的质因数,这个分数就不能化成有限小数。 3、分数和小数比较大小:一般把分数变成小数后比较更简便。 七、分数的加法和减法 1、分数方程的计算方法与整数方程的计算方法一致,在计算过程中要注意统一分数单位。 2、分数加减混和运算的运算顺序和整数加减混和运算的运算顺序相同。在计算过程,整数的运算律对分数同样适用。 3、同分母分数加、减法 :同分母分数相加、减,分母不变,只把分子相加减,计算的结果,能约分的要约成最简分数。 4、异分母分数加、减法:异分母分数相加、减,要先通分,再按照同分母分数加减法的方法进行计算;或者先根据需要进行部分通分。根据算式特点来选择方法。 2 第二单元长方体(一) 1、认识长方体、正方体,了解各部分的名称。 (1) 表面平平的部分称为面;两面相交便形成了一条棱;而三条棱又交于一点,这个点叫作顶点。 (2) 左面的面叫左面,右面的面叫右面,上面的面叫上面,下面的面叫下面(或叫底面),前面的面叫前面,后面的面叫后面。 (3) 长方体有12条棱,这12条棱中有4条长、4条宽和4条高。正方体的12条棱的长度都相等。 (4)正方体是特殊的长方体。因为正方体可以看成是长、宽、高都相等的长方体。 (5)长方体的棱长总和=(长+宽+高)×4=长×4+宽×4+高×4 长方体的宽=棱长总和÷4-长-高 长方体的长=棱长总和÷4-宽-高 长方体的高=棱长总和÷4-宽-长 正方体的棱长总和=棱长×12 正方体的棱长=棱长总和÷12 2、展开与折叠 (正方体展开共11种) 第一类:1—4—1 型6个 第二类:2—3—1 型 3个 第三类: 2—2—2 型(楼梯形)1个 第四类:3-3 型 1个 注意:(1)田字型与凹字型的全错。 (2)正方体展开至少和最多都只剪开7条棱。 3、长方体的表面积 (1)表面积的意义:是指六个面的面积之和。 (3)长方体的 表面积=长×宽×2 +长×高×2 +宽×高×2 =(长×宽+长×高+宽×高)×2 (4)正方体的表面积=棱长×棱长×6 4、露在外面的面 (1)在观察中,通过不同的观察策略进行观察。 如:一种是看每个纸箱露在外面的面,再加到一起; 另一种是分别从正面、上面、侧面进行不同角度的观察,看每个角度都能看到多少个面,再加到一起。 例如:如图,4个棱长都是10厘米的正方体堆放在墙角处,露在外面的面积是多少? 解:首先应找出有多少个面露在外面: 如果用法一的方法来找:3+1+2+3=9(个); 如果用法二的方法来找:从上面看有3个面,从右侧面看有2个面,从正面看有4个面,共有3+2+4=9(个)。 因为每个面都是面积相等的正方形,所以露在外面的面积=10×10×9=900(厘米2) 答:露在外面的面积一共是900平方厘米。 (2)发现并找出堆放的正方体的个数与露在外面的面的面数的变化规律。 (3)求露在外面的面的面积=棱长×棱长×露在外面的面的个数。 3 第三单元分数乘法 分数乘法(一)知识点: (1)理解分数乘整数的意义:分数乘整数意义同整数乘法意义相同,就是求几个相同加数的和的简便运算。 (2)分数乘整数的计算方法:分母不变,分子和整数相乘的积作分子。能约分的要约成最简分数。 (3)计算时,应该先约分再计算。 分数乘法(二) 知识点 : (1) 整数乘分数的意义:求一个数的几分之几是多少。 (2) 理解打折的含义。例如:九折,是指现价是原价的十分之九。 补充知识点: ① 打几折就是指现价是原价的百分之几,例如八五折,是指现价是原价的百分之八十五。 现价=原价×折扣 原价=现价÷折扣 折扣=现价÷原价 ②买一赠一打几折:出一个的钱拿两个货品,即 1除以2等于零点五,五折 买三赠一打几折:出三个的钱拿四个货品,即 3除以4等于零点七五,七五折 分数乘法(三) 知识点: 1、分数乘分数的计算方法:分子相乘做分子,分母相乘做分母,能约分的可以先约分。(结果是最简分数。) 2、比较分数相乘的积与每一个乘数的大小: ① 真分数相乘积小于任何一个乘数; ② 真分数与假分数相乘积大于真分数小于假分数。 ③ 乘数乘以<1的数,积<乘数; 乘数乘以=1的数,积=乘数; 乘数乘以>1的数,积>乘数; 3、求一个数的几分之几是多少,用乘法。(即已知整体和部分量相对应的分率,求部分量,用乘法) 4、倒数 (1)如果两个数的乘积是1,那么我们称其中一个数是另一个数的倒数。倒数是对两个数来说的,并不是孤立存在的。 (2)当互为倒数的两个数分别作为长方形的长和宽时,长方形的面积是1。 (3)1的倒数仍是1;0没有倒数。0没有倒数,是因为0不能作除数。 (4)求一个数的倒数的方法:把这个数的分子、分母调换位置;其中整数可以看成分母是1的分数。 4 第四单元长方体(二) 一、体积与容积概念 体积:物体所占空间的大小叫作物体的体积。(从外部测量) 容积:容器所能容纳入体的体积叫做物体的容积。(从内部测量) 注意:①同一个容器,体积大于容积;当容器壁很薄时,容积近等于体积。如果容器壁忽略不计时,容积等于体积。 ②几个物体拼在一起时,它们的体积不发生改变(它们占空间的大小没有发生变化) 二、体积单位 1、认识体积、容积单位 常用的体积单位:立方米(m⊃3;)、立方分米(dm⊃3;)、立方厘米(cm⊃3;) 常用的容积单位:升、毫升,1升=1立方分米、1毫升=1立方厘米 2、感受1立方米、1立方分米、1立方厘米以及1升、1毫升的实际意义: ① 手指头、苹果、火柴盒体积较小,可用cm⊃3;作单位 ② 西瓜、粉笔盒体积稍大,可以用dm⊃3;作单位 ③ 矿泉水瓶、墨水瓶可以用毫升作单位 ④热水瓶等较大盛液体容器、冰箱可以用升作单位 ⑤我们饮用的自来水用“立方米”作单位 三、长方体的体积 1、长方体、正方体体积的计算方法 ①长方体的体积=长×宽×高,长用a表示,宽用b表示,高用h表示,体积用V表示,体积可表示为V=abh ②正方体的体积=棱长×棱长×棱长,如果棱长用a表示,体积可表示为V=a⊃3;=a×a×a 长方体(正方体)的体积=底面积×高 V=Sh 补充知识点:长方体的体积=横截面面积×长 2、能利用长方体(正方体)的体积及其他两个条件求出问题。 如:长方体的高=体积÷长÷宽 长=体积÷高÷宽 宽=体积÷高÷长 注意:计算体积时,单位一定要统一; 表面积与体积表示的意义不一样,单位不同,无法比较大小。 四、体积单位的换算 认识体积、容积单位。 常用的体积单位有:立方厘米(cm⊃3;)、立方分米(dm⊃3;) 、立方米(m⊃3;)。 常用的容积单位有:升(L)、毫升(m L) 知识点: 1、体积、容积单位之间的进率:相邻体积、容积单位间进为1000 1米⊃3;=1000分米⊃3; 1分米⊃3;=1000厘米⊃3; 1升=1分米⊃3; 1毫升=1厘米⊃3; 1升=1000毫升 2、体积、容积单位之间的换算方法: 体积、容积单位之间的换算,由高级单位化成低级单位乘进率,由低级单位化成高级单位除以进率 五、有趣的测量 1、不规则物体体积的测量方法: 一般都是把不规则物体的体积转化成可通过测量计算的水的体积(注意液面是“升高了”还是“升高到”) 注意:在测量体积较小的不规则物体的体积时,要先测量出一定数量物体的体积,再算出一个物体的体积 2、不规则物体体积的计算方法:现在液体体积减去原来液体体积 5 第五单元分数除法 一、分数除法(一) 分数除以整数的意义及计算方法。分数除以整数,就是求这个数的几分之几是多少。 分数除以整数(0除外)等于乘这个数的倒数。 二、分数除法(二) 1、一个数除以分数的意义和基本算理:一个数除以分数的意义与整数除法的意义相同;一个数除以分数等于乘这个数的倒数。 2、一个数除以分数的计算方法: 除以一个数(0除外)等于乘这个数的倒数。 3、比较商与被除数的大小。 除数小于1,商大于被除数; 除数等于1。商等于被除数; 除数大于1,商小于被除数。 三、分数除法(三) 1、列方程“求一个数的几分之几是多少”的方法: (1)解方程法:设未知数,这里的单位“1”未知,所以设单位“1”为x,再根据分数乘法的意义列出等量关系式解这个方程。 (2)算术方法:用部分量除以它所占整体的几分之几 (对应量÷对应分率=标准量) 2、判断单位“1”: ①一般来说,某个数的几分之几,“某个数”就是单位“1” ②数比谁多几分之几或少几分之几,“比”字后面的数量就是单位“1” ③谁是谁的几分之几,“是”字后面的数量就是单位“1” 四、倒数 1、理解倒数的意义:如果两个数的乘积是1,那么我们称其中一个数是另一个数的倒数。倒数是对两个数来说的,并不是孤立存在的。 2、求倒数的方法:把这个数的分子和分母调换位置。 3、1的倒数仍是1;0没有倒数。(0没有倒数,是因为在分数中,0不能做分母。) 6 第六单元确定位置 确定位置(一)知识点 1、 认识方向与距离对确定位置的作用。 2、 能根据方向和距离确定物体的位置。 3、 能描述简单的路线图。 确定位置(二)知识点 了解确定物体位置的方法。 能根据平面图确定图中任意两地的相对位臵(以其中一地为观察点,度量另一地所在方向以及两地的距离) 1、数对:一般由两个数组成。 作用:数对可以表示物体的位置,也可以确定物体的位置。 2、行和列的意义:竖排叫做列,横排叫做行。 3、数对表示位置的方法:先表示列,再表示行。用括号把代表列和行的数字或字母括起来,再用逗号隔开。例如:在方格图(平面直角坐标系)中用数对(3,5)表示(第三列,第五行) (1)在平面直角坐标系中X轴上的坐标表示列,y轴上的坐标表示行。如:数对(3,2)表示第三列,第二行。 (2)数对(X,5)的行号不变,表示一条横线,(5,Y)的列号不变,表示一条竖线。(有一个数不确定,不能确定一个点) 4、两个数对,前一个数相同,说明它们所表示物体位置在同一列上。 如:(2,4)和(2,7)都在第2列上。 5、两个数对,后一个数相同,说明它们所表示物体位置在同一行上。 如:(3,6)和(1,6)都在第6行上。 6、图形平移变化规律: (1)图形向左平移,行数不变,列数减去平移的格数。 图形向右平移,行数不变,列数加上平移的格数。 (2) 图形向上平移,列数不变,行数加上平移的格数。 图形向下平移,列数不变,行数减去平移的格数。 7 第七单元用方程解决问题 1、列方程解应用题的步骤: (1)找到题中的等量关系式 (2)解设所求量为x (3)根据等量关系式列出相应的方程 (4)解答方程,注意计算结果不带单位 (5)检验做答 2、在有多个未知数量的应用题中,通常应将1倍数设为x,举例如下: 例:爸爸的年龄是儿子年龄的4倍,父子俩年龄之和为40,求父亲和儿子的年龄各是多少岁? 解:首先根据题意找出等量关系式:爸爸年龄+儿子年龄=40 因为儿子年龄是1倍数,所以:设儿子年龄为x岁,那么爸爸年龄就是4x,代入等量关系式得: 爸爸年龄为:4x=4×8=32(岁) 答:爸爸的年龄为32岁,儿子的年龄为8岁。 3、相遇问题涉及到的公式: 路程=速度×时间 时间=路程÷速度 相距距离=速度和×相遇时间 8 第八单元数据的表示和分析 1、条形统计图 优点:很容易看出各种数量的多少。 注意:画条形统计图时,直条的宽窄必须相同。 取一个单位长度表示数量的多少要根据具体情况而确定; 复式条形统计图中表示不同项目的直条,要用不同的线条或颜色区别开,并在制图日期下面注明图例。 2、折线统计图 用一个单位长度表示一定的数量,根据数量的多少描出各点,然后把各点用线段顺次连接起来。 优点:不但可以表示数量的多少,而且能够清楚地表示出数量增减变化的情况。 注意:折线统计图的横轴表示不同的年份、月份等时间时,不同时间之间的距离要根据年份或月份的间隔来确定。 3、扇形统计图 用整个圆的面积表示总数,用扇形面积表示各部分所占总数的百分数。 优点:很清楚地表示出各部分同总数之间的关系。 2015北师大五年级下册数学知识点总结 第一单元:《分数加减法》 一、分数的意义 1、分数的意义:把单位“1”平均分成若干份,表示这样的一份或几份的数,叫做分数。 2、分数单位:把单位“1”平均分成若干份,表示这样的一份的数叫做分数单位。 二、分数与除法的关系,真分数和假分数 1、分数与除法的关系:除法中的被除数相当于分数的分子,除数相等于分母。 2、真分数和假分数: ① 分子比分母小的分数叫做真分数,真分数小于1。 ② 分子比分母大或分子和分母相等的分数叫做假分数,假分数大于1或等于1。 ③ 由整数部分和分数部分组成的分数叫做带分数。 2、假分数与带分数的互化: ① 把假分数化成带分数,用分子除以分母,所得商作整数部分,余数作分子,分母不变。 ② 把带分数化成假分数,用整数部分乘以分母加上分子作分子,分母不变。 三、分数的基本质 分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变,这叫做分数的基本性质。 2、分数的大小比较:① 同分母分数,分子大的分数就大,分子小的分数就小; ② 同分子分数,分母大的分数反而小,分母小的分数反而大。 ③ 异分母分数,先化成同分母分数(分数单位相同),再进行比较。(依据分数的基本性质进行变化) 四、约分(最简分数) 1、最简分数:分子和分母只有公因数1的分数叫做最简分数。 2、约分:把一个分数化成和它相等,但分子和分母都比较小的分数,叫做约分。 (并不是一定要把分数化成与它相等的最简分数才叫约分;但一般要约到最简分数为止) 注意:分数加减法中,计算结果能约分的,一般要约分成最简分数。 五、分数和小数的互化: 1、小数化分数:将小数化成分母是10、100、1000?的分数,能约分的要约分。具体是:看有几位小数,就在1后边写几个0做分母,把小数点去掉的部分做分子,能约分的要约分。 2、分数化小数:用分子除以分母,除不尽的按要求保留几位小数。(一般保留三位小数。) 如果分母只含有2或5的质因数,这个分数能化成有限小数。如果含有2或5以外的质因数,这个分数就不能化成有限小数。 3、分数和小数比较大小:一般把分数变成小数后比较更简便。 六、分数的加法和减法 1、分数加减法 (1)分数方程的计算方法与整数方程的计算方法一致,在计算过程中要注意统一分数单位。 (2)分数加减混和运算的运算顺序和整数加减混和运算的运算顺序相同。在计算过程,整数的运算律对分数同样适用。 (3)同分母分数加、减法 :同分母分数相加、减,分母不变,只把分子相加减,计算的结果,能约分的要约成最简分数。 (4)异分母分数加、减法:异分母分数相加、减,要先通分,再按照同分母分数加减法的方法进行计算;或者先根据需要进行部分通分。根据算式特点来选择方法。 第二单元:《长方体(一)》 长方体(一) 长方体的认识 知识点:1、认识长方体、正方体,了解各部分的名称。 (1) 表面平平的部分称为面;两面相交便形成了一条棱;而三条棱又交于一点,这个点叫作顶点。 (2) 左面的面叫左面,右面的面叫右面,上面的面叫上面,下面的面叫下面(或叫底面),前面的面叫前面, 后面的面叫后面。 (3) 长方体有12条棱,这12条棱中有4条长、4条宽和4条高。正方体的12条棱的长度都相等。 (4)、正方体是特殊的长方体。因为正方体可以看成是长、宽、高都相等的长方体。 (5)、长方体的棱长总和=(长+宽+高)×4或者是长×4+宽×4+高×4 长方体的宽=棱长总和÷4-长-高 长方体的长=棱长总和÷4-宽-高 长方体的高=棱长总和÷4-宽-长 正方体的棱长总和=棱长×12 正方体的棱长=棱长总和÷12 2.展开与折叠 知识点:正方体展开共11种 1—4—1 型 6个 2—3—1 型 3个 2—2—2 型 1个 楼梯形 3-3 型 1个 注意:(1)田字型与凹字型的全错。 (2)正方体展开至少和最多都只剪开7条棱。 3、长方体的表面积 知识点: (1)、表面积的意义:是指六个面的面积之和。 (2)、长方体和正方体表面积的计算方法: (3)、长方体的表面积(6个面)=长×宽×2 +长×高×2 +宽×高×2 (上下面) (前后面) (左右面) S长=(长×宽+长×高+宽×高)×2 (4)、正方体的表面积(6个面)=棱长×棱长×6 S正=棱长×棱长×6 (一个面的面积) 4、露在外面的面 知识点:(1)、在观察中,通过不同的观察策略进行观察。 如::一种是看每个纸箱露在外面的面,再加到一起;另一种是分别从正面、上面、侧面进行 不同角度的观察,看每个角度都能看到多少个面,再加到一起。 (2)、发现并找出堆放的正方体的个数与露在外面的面的面数的变化规律。 (3)、求露在外面的面的面积=棱长×棱长×露在外面的面的个数。 (一个面的面积) 第三单元《分数乘法》 分数乘法(一)知识点: (1)理解分数乘整数的意义:分数乘整数意义同整数乘法意义相同,就是求几个相同加数的和的简便运算。 (2)分数乘整数的计算方法:分母不变,分子和整数相乘的积作分子。能约分的要约成最简分数。 (3)计算时,应该先约分再计算。 分数乘法(二) 知识点 : (1)、整数乘分数的意义:求一个数的几分之几是多少。 (2)、理解打折的含义。例如:九折,是指现价是原价的十分之九。 补充知识点: 1、打几折就是指现价是原价的百分之几,例如八五折,是指现价是原价的百分之八十五。 现价=原价×折扣 原价=现价÷折扣 折扣=现价÷原价 2、买一赠一打几折: 出一个的钱拿两个货品 即 1除以2等于零点五 五折 买三赠一打几折: 出三个的钱拿四个货品 即 3除以4等于零点七五 七五折 分数乘法(三) 知识点: 1、分数乘分数的计算方法:分子相乘做分子,分母相乘做分母,能约分的可以先约分。(结果是最简分数。) 2、比较分数相乘的积与每一个乘数的大小: 真分数相乘积小于任何一个乘数;真分数与假分数相乘积大于真分数小于假分数。 3、比较分数相乘的积与每一个乘数的大小。 乘数乘以<1的数,积<乘数; 乘数乘以=1的数,积=乘数; 乘数乘以>1的数,积>乘数; 真分数相乘积小于任何一个乘数; 真分数与假分数相乘积大于真分数小于假分数。 4、求一个数的几分之几是多少,用乘法。(即已知整体和部分量相对应的分率,求部分量,用乘法) 5、倒数、 (1)、如果两个数的乘积是1,那么我们称其中一个数是另一个数的倒数。倒数是对两个数来说的,并不是孤立存在的。 (2)、当互为倒数的两个数分别作为长方形的长和宽时,长方形的面积是1。 (3)、1的倒数仍是1;0没有倒数。0没有倒数,是因为0不能作除数。 (4)、求一个数的倒数的方法:把这个数的分子、分母调换位置;其中整数可以看成分母是1的分数。 第四单元:《长方体(二)》 4.1体积与容积 知识点: 1、体积与容积的概念: 体积:物体所占空间的大小叫作物体的体积。(从外部测量) 容积:容器所能容纳入体的体积叫做物体的容积。(从内部测量) 注意:①同一个容器,体积大于容积;当容器壁很薄时,容积近等于体积。如果容器壁忽略不计时,容积等于体积。 ②几个物体拼在一起时,它们的体积不发生改变(它们占空间的大小没有发生变化) 4.2体积单位 知识点: 1、认识体积、容积单位 常用的体积单位:立方米(3米)、立方分米(3分米)、立方厘米(3厘米) 常用的容积单位:升、毫升、1升=13分米、1毫升=13厘米 2、感受1立方米、1立方分米、1立方厘米以及1升、1毫升的实际意义: ①手指头、苹果、火柴盒体积较小,可用3厘米作单位 ②西瓜、粉笔盒体积稍大,可以用3分米作单位 ③矿泉水瓶、墨水瓶可以用毫升作单位 ④热水瓶等较大盛液体容器、冰箱可用生升作单位 ⑤我们饮用的自来水用“立方米”作单位。 4.3长方体的体积 知识点: 1、长方体、正方体体积的计算方法 ①长方体的体积=长×宽×高,长用a表示,宽用b表示,高用h表示,体积用V表示,体积可表示为V=abh ②正方体的体积=棱长*棱长*棱长,如果棱长用a表示,体积可表示为V=3a=a×a×a 长方体(正方体)的体积=底面积×高 V=Sh 补充知识点:长方体的体积=横截面面积×长 2、能利用长方体(正方体)的体积及其他两个条件求出问题。 如:长方体的高=体积÷长÷宽 长=体积÷高÷宽 宽=体积÷高÷长 注意:计算体积时,单位一定要统一;表面积与体积表示的意义不一样,单位不同,无法比较大小 4.4体积单位的换算 认识体积、容积单位。 常用的体积单位有:立方厘米(cm3)、立方分米(dm3) 、立方米(m3)。 常用的容积单位有:升(L)、毫升(m L) 知识点:1、体积、容积单位之间的进率:相邻体积、容积单位间进率为1000 1米3=1000分米3 1分米3=1000厘米3 1升=1分米3 1毫升=1厘米3 1升=1000毫升 2、体积、容积单位之间的换算方法:体积、容积单位之间的换算,由高级单位化成低级单位乘进率, 由低级单位化成高级单位除以进率 4.5有趣的测量 知识点: 1不规则物体体积的测量方法:一般都是把不规则物体的体积转化成可通过测量计算的水的体积(注意液面是“升高了”还是“升高到”)注意:在测量体积较小的不规则物体的体积时,要先测量出一定数量物体的体积,再算出一个物体的体积2不规则物体体积的计算方法:现在液体体积减去原来液体体积 第五单元:《分数除法》 分数除法(一)知识点: 1、分数除以整数的意义及计算方法。分数除以整数,就是求这个数的几分之几是多少。分数除以整数(0除外)等于乘这个数的倒数。 分数除法(二)知识点: 1、一个数除以分数的意义和基本算理:一个数除以分数的意义与整数除法的意义相同;一个数除以分数等于乘这个数的倒数。 2、一个数除以分数的计算方法: 除以一个数(0除外)等于乘这个数的倒数。 3、比较商与被除数的大小。 除数小于1,商大于被除数; 除数等于1。商等于被除数; 除数大于1,商小于被除数。 分数除法(三) 知识点: 1、列方程“求一个数的几分之几是多少”的方法: (1)、解方程法:设未知数,这里的单位“1”未知,所以设单位“1”为x,再根据分数乘法的意义列出等量关系式解这个方程。 (2)、算术方法:用部分量除以它所占整体的几分之几 (对应量÷对应分率=标准量) 2、判断单位“1”: ①一般来说,某个数的几分之几,“某个数”就是单位“1” ②数比谁多几分之几或少几分之几,“比”字后面的数量就是单位“1” ③谁是谁的几分之几,“是”字后面的数量就是单位“1” 倒数 知识点: 1、理解倒数的意义: 如果两个数的乘积是1,那么我们称其中一个数是另一个数的倒数。倒数是对两个数来说的,并不是孤立存在的。 2、求倒数的方法:把这个数的分子和分母调换位置。 3、1的倒数仍是1;0没有倒数。0没有倒数,是因为在分数中,0不能做分母。 第六单元确定位置 确定位置(一)知识点 1、 认识方向与距离对确定位置的作用。 2、 能根据方向和距离确定物体的位置。 3、 能描述简单的路线图。 确定位置(二)知识点 了解确定物体位置的方法。 能根据平面图确定图中任意两地的相对位臵(以其中一地为观察点,度量另一地所在方向以及两地的距离) 1数对:一般由两个数组成。 作用:数对可以表示物体的位置,也可以确定物体的位置。 2行和列的意义:竖排叫做列,横排叫做行。 3数对表示位置的方法:先表示列,再表示行。用括号把代表列和行的数字或字母括起来,再用逗号隔开。例如:在方格图(平面直角坐标系)中用数对(3,5)表示(第三列,第五行) (1)在平面直角坐标系中X轴上的坐标表示列,y轴上的坐标表示行。如:数对(3,2)表示第三列,第二行。 (2)数对(X,5)的行号不变,表示一条横线,(5,Y)的列号不变,表示一条竖线。(有一个数不确定,不能确定一个点) 4两个数对,前一个数相同,说明它们所表示物体位置在同一列上。如:(2,4)和(2,7)都在第2列上。 5两个数对,后一个数相同,说明它们所表示物体位置在同一行上。如:(3,6)和(1,6)都在第6行上。 6图形平移变化规律: (1)图形向左平移,行数不变,列数减去平移的格数。 图形向右平移,行数不变,列数加上平移的格数。 (2) 图形向上平移,列数不变,行数加上平移的格数。 图形向下平移,列数不变,行数减去平移的格数。 第七单元:《用方程解决问题》 1、小数乘整数的意义——求几个相同加数的和的简便运算。 如1:3χ表示χ的3倍是多少或3个χ的和的简便运算。 如2:1.5χ表示χ的1.5倍是多少或1.5个χ的和的简便运算。 2、 在乘法里:一个因数扩大几倍,另一个因数缩小相同的倍数,积不变。(这叫做积不变性质) 3、 在除法里:被除数和除数同时扩大(或缩小)相同的倍数,商的大小不变。(这叫做商不变性质) 4. 乘法分配律: a×(b ± c) = a×b ± a×c 5、在含有字母的式子里,字母中间的乘号可以简记“·”,也可以省略不写。(注意:加号、减号、除号以及数与数之间的乘号不能省略。字母与数字相乘简写时,数字写在字母前面。) 6、a×a可以写作a·a或a2 ,a2读作a的平方或a的二次方。 2a表示a+a 7、方程:含有未知数的等式称为方程。(所有的方程都是等式,但等式不一定都是等式。) 使方程左右两边相等的未知数的值,叫做方程的解。 求方程的解的过程叫做解方程。 (方程的解是一个数;解方程是一个计算过程。) 8、解方程原理:天平平衡。 等式左右两边同时加、减、乘、除相同的数(0除外),等式依然成立。 9、解方程的方法: 方法一:利用天平平衡原理(即等式的性质)解方程; 方法二:利用加、减、乘、除运算数量关系解方程。 10、加、减、乘、除运算数量关系式: 加法:和=加数+加数 一个加数=和-两一个加数 减法:差=被减数-减数 被减数=差+减数 减数=被减数-差 乘法:积=因数×因数 一个因数=积÷另一个因数 除法:商=被除数÷除数 被除数=商×除数 除数=被除数÷商 11、常用数量关系式: 路程=速度×时间 速度=路程÷时间 时间=路程÷速度 总价=单价×数量 单价=总价÷数量 数量=总价÷单价 总产量=单产量×数量 单产量=总产量÷数量 数量=总产量÷单价 被减数-减数=差 减数=被减数-差 被减数=差+减数 (大数-小数=相差数 大数-相差数=小数 小数+相差数=大数 ) 因数 × 因数=积 一个因数=积÷另一个因数 被除数÷除数=商 除数=被除数÷商 被除数=商×除数 (一倍量×倍数=几倍量 几倍量÷倍数=一倍量 几倍量÷一倍量=倍数 ) 工作总量=工作效率×工作时间 工作效率=工作总量÷工作时间 工作时间=工作总量÷工作效率 12、相遇问题:特点:必须是同时的 可根据不同的行程进行分析。 路程=速度和×相遇时间 速度和=路程÷相遇时间 相遇时间=路程÷速度和 速度1=路程÷相遇时间-速度2 13、列方程解应用题的一般步骤: 1、弄清题意,找出未知数,并用x表示。(解 设) 2、找出应用题中数量之间的相等关系,列方程。(找关系) 3、解方程。(列) 4、检验,写出答案。(验) 第八单元:《数据的表示和分析》 1、条形统计图 优点:很容易看出各种数量的多少。 注意:画条形统计图时,直条的宽窄必须相同。 取一个单位长度表示数量的多少要根据具体情况而确定; 复式条形统计图中表示不同项目的直条,要用不同的线条或颜色区别开,并在制图日期下面注明图例。 2、折线统计图 用一个单位长度表示一定的数量,根据数量的多少描出各点,然后把各点用线段顺次连接起来。 优点:不但可以表示数量的多少,而且能够清楚地表示出数量增减变化的情况。 注意:折线统计图的横轴表示不同的年份、月份等时间时,不同时间之间的距离要根据年份或月份的间隔来确定。 3、扇形统计图 用整个圆的面积表示总数,用扇形面积表示各部分所占总数的百分数。 优点:很清楚地表示出各部分同总数之间的关系。 (大数-小数=相差数 大数-相差数=小数 小数+相差数=大数 ) 因数 × 因数=积 一个因数=积÷另一个因数 被除数÷除数=商 除数=被除数÷商 被除数=商×除数 (一倍量×倍数=几倍量 几倍量÷倍数=一倍量 几倍量÷一倍量=倍数 ) 工作总量=工作效率×工作时间 工作效率=工作总量÷工作时间 工作时间=工作总量÷工作效率 12、相遇问题:特点:必须是同时的 可根据不同的行程进行分析。 路程=速度和×相遇时间 速度和=路程÷相遇时间 相遇时间=路程÷速度和 速度1=路程÷相遇时间-速度2 13、列方程解应用题的一般步骤: 1、弄清题意,找出未知数,并用x表示。(解 设) 2、找出应用题中数量之间的相等关系,列方程。(找关系) 3、解方程。(列) 4、检验,写出答案。(验) 第八单元:《数据的表示和分析》 1、条形统计图 优点:很容易看出各种数量的多少。 注意:画条形统计图时,直条的宽窄必须相同。 取一个单位长度表示数量的多少要根据具体情况而确定; 复式条形统计图中表示不同项目的直条,要用不同的线条或颜色区别开,并在制图日期下面注明图例。 2、折线统计图 用一个单位长度表示一定的数量,根据数量的多少描出各点,然后把各点用线段顺次连接起来。 优点:不但可以表示数量的多少,而且能够清楚地表示出数量增减变化的情况。 注意:折线统计图的横轴表示不同的年份、月份等时间时,不同时间之间的距离要根据年份或月份的间隔来确定。 3、扇形统计图 用整个圆的面积表示总数,用扇形面积表示各部分所占总数的百分数。 优点:很清楚地表示出各部分同总数之间的关系。 21- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 知识点 梳理
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【天****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【天****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【天****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【天****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文