河南省2018年中考数学试卷及答案解析(word版).doc
《河南省2018年中考数学试卷及答案解析(word版).doc》由会员分享,可在线阅读,更多相关《河南省2018年中考数学试卷及答案解析(word版).doc(34页珍藏版)》请在咨信网上搜索。
2018年河南省中考数学试卷 一、选择题(每题只有一个正确选项,本题共10小题,每题3分,共30分) 1.(3分)﹣的相反数是( ) A.﹣ B. C.﹣ D. 2.(3分)今年一季度,河南省对“一带一路”沿线国家进出口总额达214.7亿元,数据“214.7亿”用科学记数法表示为( ) A.2.147×102 B.0.2147×103 C.2.147×1010 D.0.2147×1011 3.(3分)某正方体的每个面上都有一个汉字,如图是它的一种展开图,那么在原正方体中,与“国”字所在面相对的面上的汉字是( ) A.厉 B.害 C.了 D.我 4.(3分)下列运算正确的是( ) A.(﹣x2)3=﹣x5 B.x2+x3=x5 C.x3•x4=x7 D.2x3﹣x3=1 5.(3分)河南省旅游资源丰富,2013~2017年旅游收入不断增长,同比增速分别为:15.3%,12.7%,15.3%,14.5%,17.1%.关于这组数据,下列说法正确的是( ) A.中位数是12.7% B.众数是15.3% C.平均数是15.98% D.方差是0 6.(3分)《九章算术》中记载:“今有共买羊,人出五,不足四十五;人出七,不足三问人数、羊价各几何?”其大意是:今有人合伙买羊,若每人出5钱,还差45钱;若每人出7钱,还差3钱,问合伙人数、羊价各是多少?设合伙人数为x人,羊价为y线,根据题意,可列方程组为( ) A. B. C. D. 7.(3分)下列一元二次方程中,有两个不相等实数根的是( ) A.x2+6x+9=0 B.x2=x C.x2+3=2x D.(x﹣1)2+1=0 8.(3分)现有4张卡片,其中3张卡片正面上的图案是“”,1张卡片正面上的图案是“”,它们除此之外完全相同.把这4张卡片背面朝上洗匀,从中随机抽取两张,则这两张卡片正面图案相同的概率是( ) A. B. C. D. 9.(3分)如图,已知▱AOBC的顶点O(0,0),A(﹣1,2),点B在x轴正半轴上按以下步骤作图:①以点O为圆心,适当长度为半径作弧,分别交边OA,OB于点D,E;②分别以点D,E为圆心,大于DE的长为半径作弧,两弧在∠AOB内交于点F;③作射线OF,交边AC于点G,则点G的坐标为( ) A.(﹣1,2) B.(,2) C.(3﹣,2) D.(﹣2,2) 10.(3分)如图1,点F从菱形ABCD的顶点A出发,沿A→D→B以1cm/s的速度匀速运动到点B,图2是点F运动时,△FBC的面积y(cm2)随时间x(s)变化的关系图象,则a的值为( ) A. B.2 C. D.2 二、细心填一填(本大题共5小题,每小题3分,满分15分,请把答案填在答題卷相应题号的横线上) 11.(3分)计算:|﹣5|﹣= . 12.(3分)如图,直线AB,CD相交于点O,EO⊥AB于点O,∠EOD=50°,则∠BOC的度数为 . 13.(3分)不等式组的最小整数解是 . 14.(3分)如图,在△ABC中,∠ACB=90°,AC=BC=2,将△ABC绕AC的中点D逆时针旋转90°得到△A'B′C',其中点B的运动路径为,则图中阴影部分的面积为 . 15.(3分)如图,∠MAN=90°,点C在边AM上,AC=4,点B为边AN上一动点,连接BC,△A′BC与△ABC关于BC所在直线对称,点D,E分别为AC,BC的中点,连接DE并延长交A′B所在直线于点F,连接A′E.当△A′EF为直角三角形时,AB的长为 . 三、计算题(本大题共8题,共75分,请认真读题) 16.(8分)先化简,再求值:(﹣1)÷,其中x=+1. 17.(9分)每到春夏交替时节,雌性杨树会以满天飞絮的方式来传播下一代,漫天飞舞的杨絮易引发皮肤病、呼吸道疾病等,给人们造成困扰,为了解市民对治理杨絮方法的赞同情况,某课题小组随机调查了部分市民(问卷调查表如表所示),并根据调查结果绘制了如下尚不完整的统计图. 治理杨絮一一您选哪一项?(单选) A.减少杨树新增面积,控制杨树每年的栽种量 B.调整树种结构,逐渐更换现有杨树 C.选育无絮杨品种,并推广种植 D.对雌性杨树注射生物干扰素,避免产生飞絮 E.其他 根据以上统计图,解答下列问题: (1)本次接受调查的市民共有 人; (2)扇形统计图中,扇形E的圆心角度数是 ; (3)请补全条形统计图; (4)若该市约有90万人,请估计赞同“选育无絮杨品种,并推广种植”的人数. 18.(9分)如图,反比例函数y=(x>0)的图象过格点(网格线的交点)P. (1)求反比例函数的解析式; (2)在图中用直尺和2B铅笔画出两个矩形(不写画法),要求每个矩形均需满足下列两个条件: ①四个顶点均在格点上,且其中两个顶点分别是点O,点P; ②矩形的面积等于k的值. 19.(9分)如图,AB是⊙O的直径,DO⊥AB于点O,连接DA交⊙O于点C,过点C作⊙O的切线交DO于点E,连接BC交DO于点F. (1)求证:CE=EF; (2)连接AF并延长,交⊙O于点G.填空: ①当∠D的度数为 时,四边形ECFG为菱形; ②当∠D的度数为 时,四边形ECOG为正方形. 20.(9分)“高低杠”是女子体操特有的一个竞技项目,其比赛器材由高、低两根平行杠及若干支架组成,运动员可根据自己的身高和习惯在规定范围内调节高、低两杠间的距离.某兴趣小组根据高低杠器材的一种截面图编制了如下数学问题,请你解答. 如图所示,底座上A,B两点间的距离为90cm.低杠上点C到直线AB的距离CE的长为155cm,高杠上点D到直线AB的距离DF的长为234cm,已知低杠的支架AC与直线AB的夹角∠CAE为82.4°,高杠的支架BD与直线AB的夹角∠DBF为80.3°.求高、低杠间的水平距离CH的长.(结果精确到1cm,参考数据sin82.4°≈0.991,cos82.4°≈0.132,tan82.4°≈7.500,sin80.3°≈0.983,cos80.3°≈0.168,tan80.3°≈5.850) 21.(10分)某公司推出一款产品,经市场调查发现,该产品的日销售量y(个)与销售单价x(元)之间满足一次函数关系关于销售单价,日销售量,日销售利润的几组对应值如表: 销售单价x(元) 85 95 105 115 日销售量y(个) 175 125 75 m 日销售利润w(元) 875 1875 1875 875 (注:日销售利润=日销售量×(销售单价﹣成本单价)) (1)求y关于x的函数解析式(不要求写出x的取值范围)及m的值; (2)根据以上信息,填空: 该产品的成本单价是 元,当销售单价x= 元时,日销售利润w最大,最大值是 元; (3)公司计划开展科技创新,以降低该产品的成本,预计在今后的销售中,日销售量与销售单价仍存在(1)中的关系.若想实现销售单价为90元时,日销售利润不低于3750元的销售目标,该产品的成本单价应不超过多少元? 22.(10分)(1)问题发现 如图1,在△OAB和△OCD中,OA=OB,OC=OD,∠AOB=∠COD=40°,连接AC,BD交于点M.填空: ①的值为 ; ②∠AMB的度数为 . (2)类比探究 如图2,在△OAB和△OCD中,∠AOB=∠COD=90°,∠OAB=∠OCD=30°,连接AC交BD的延长线于点M.请判断的值及∠AMB的度数,并说明理由; (3)拓展延伸 在(2)的条件下,将△OCD绕点O在平面内旋转,AC,BD所在直线交于点M,若OD=1,OB=,请直接写出当点C与点M重合时AC的长. 23.(11分)如图,抛物线y=ax2+6x+c交x轴于A,B两点,交y轴于点C.直线y=x﹣5经过点B,C. (1)求抛物线的解析式; (2)过点A的直线交直线BC于点M. ①当AM⊥BC时,过抛物线上一动点P(不与点B,C重合),作直线AM的平行线交直线BC于点Q,若以点A,M,P,Q为顶点的四边形是平行四边形,求点P的横坐标; ②连接AC,当直线AM与直线BC的夹角等于∠ACB的2倍时,请直接写出点M的坐标. 2018年河南省中考数学试卷 参考答案与试题解析 一、选择题(每题只有一个正确选项,本题共10小题,每题3分,共30分) 1.(3分)﹣的相反数是( ) A.﹣ B. C.﹣ D. 【分析】直接利用相反数的定义分析得出答案. 【解答】解:﹣的相反数是:. 故选:B. 【点评】此题主要考查了相反数,正确把握相反数的定义是解题关键. 2.(3分)今年一季度,河南省对“一带一路”沿线国家进出口总额达214.7亿元,数据“214.7亿”用科学记数法表示为( ) A.2.147×102 B.0.2147×103 C.2.147×1010 D.0.2147×1011 【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数. 【解答】解:214.7亿,用科学记数法表示为2.147×1010, 故选:C. 【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值. 3.(3分)某正方体的每个面上都有一个汉字,如图是它的一种展开图,那么在原正方体中,与“国”字所在面相对的面上的汉字是( ) A.厉 B.害 C.了 D.我 【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答. 【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形, “的”与“害”是相对面, “了”与“厉”是相对面, “我”与“国”是相对面. 故选:D. 【点评】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题. 4.(3分)下列运算正确的是( ) A.(﹣x2)3=﹣x5 B.x2+x3=x5 C.x3•x4=x7 D.2x3﹣x3=1 【分析】分别根据幂的乘方、同类项概念、同底数幂相乘及合并同类项法则逐一计算即可判断. 【解答】解:A、(﹣x2)3=﹣x6,此选项错误; B、x2、x3不是同类项,不能合并,此选项错误; C、x3•x4=x7,此选项正确; D、2x3﹣x3=x3,此选项错误; 故选:C. 【点评】本题主要考查整式的运算,解题的关键是掌握幂的乘方、同类项概念、同底数幂相乘及合并同类项法则. 5.(3分)河南省旅游资源丰富,2013~2017年旅游收入不断增长,同比增速分别为:15.3%,12.7%,15.3%,14.5%,17.1%.关于这组数据,下列说法正确的是( ) A.中位数是12.7% B.众数是15.3% C.平均数是15.98% D.方差是0 【分析】直接利用方差的意义以及平均数的求法和中位数、众数的定义分别分析得出答案. 【解答】解:A、按大小顺序排序为:12.7%,14.5%,15.3%,15.3%,17.1%, 故中位数是:15.3%,故此选项错误; B、众数是15.3%,正确; C、(15.3%+12.7%+15.3%+14.5%+17.1%) =14.98%,故选项C错误; D、∵5个数据不完全相同, ∴方差不可能为零,故此选项错误. 故选:B. 【点评】此题主要考查了方差的意义以及平均数的求法和中位数、众数的定义,正确把握相关定义是解题关键. 6.(3分)《九章算术》中记载:“今有共买羊,人出五,不足四十五;人出七,不足三问人数、羊价各几何?”其大意是:今有人合伙买羊,若每人出5钱,还差45钱;若每人出7钱,还差3钱,问合伙人数、羊价各是多少?设合伙人数为x人,羊价为y线,根据题意,可列方程组为( ) A. B. C. D. 【分析】设设合伙人数为x人,羊价为y线,根据羊的价格不变列出方程组. 【解答】解:设合伙人数为x人,羊价为y线,根据题意,可列方程组为:. 故选:A. 【点评】本题考查了由实际问题抽象出二元一次方程组,找准等量关系是解题的关键. 7.(3分)下列一元二次方程中,有两个不相等实数根的是( ) A.x2+6x+9=0 B.x2=x C.x2+3=2x D.(x﹣1)2+1=0 【分析】根据一元二次方程根的判别式判断即可. 【解答】解:A、x2+6x+9=0 △=62﹣4×9=36﹣36=0, 方程有两个相等实数根; B、x2=x x2﹣x=0 △=(﹣1)2﹣4×1×0=1>0 两个不相等实数根; C、x2+3=2x x2﹣2x+3=0 △=(﹣2)2﹣4×1×3=﹣8<0, 方程无实根; D、(x﹣1)2+1=0 (x﹣1)2=﹣1, 则方程无实根; 故选:B. 【点评】本题考查的是一元二次方程根的判别式,一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:①当△>0时,方程有两个不相等的两个实数根;②当△=0时,方程有两个相等的两个实数根;③当△<0时,方程无实数根. 8.(3分)现有4张卡片,其中3张卡片正面上的图案是“”,1张卡片正面上的图案是“”,它们除此之外完全相同.把这4张卡片背面朝上洗匀,从中随机抽取两张,则这两张卡片正面图案相同的概率是( ) A. B. C. D. 【分析】直接利用树状图法列举出所有可能进而求出概率. 【解答】解:令3张用A1,A2,A3,表示,用B表示, 可得: , 一共有12种可能,两张卡片正面图案相同的有6种, 故从中随机抽取两张,则这两张卡片正面图案相同的概率是:. 故选:D. 【点评】此题主要考查了树状图法求概率,正确列举出所有的可能是解题关键. 9.(3分)如图,已知▱AOBC的顶点O(0,0),A(﹣1,2),点B在x轴正半轴上按以下步骤作图:①以点O为圆心,适当长度为半径作弧,分别交边OA,OB于点D,E;②分别以点D,E为圆心,大于DE的长为半径作弧,两弧在∠AOB内交于点F;③作射线OF,交边AC于点G,则点G的坐标为( ) A.(﹣1,2) B.(,2) C.(3﹣,2) D.(﹣2,2) 【分析】依据勾股定理即可得到Rt△AOH中,AO=,依据∠AGO=∠AOG,即可得到AG=AO=,进而得出HG=﹣1,可得G(﹣1,2). 【解答】解:∵▱AOBC的顶点O(0,0),A(﹣1,2), ∴AH=1,HO=2, ∴Rt△AOH中,AO=, 由题可得,OF平分∠AOB, ∴∠AOG=∠EOG, 又∵AG∥OE, ∴∠AGO=∠EOG, ∴∠AGO=∠AOG, ∴AG=AO=, ∴HG=﹣1, ∴G(﹣1,2), 故选:A. 【点评】本题主要考查了角平分线的作法,勾股定理以及平行四边形的性质的运用,解题时注意:求图形中一些点的坐标时,过已知点向坐标轴作垂线,然后求出相关的线段长,是解决这类问题的基本方法和规律. 10.(3分)如图1,点F从菱形ABCD的顶点A出发,沿A→D→B以1cm/s的速度匀速运动到点B,图2是点F运动时,△FBC的面积y(cm2)随时间x(s)变化的关系图象,则a的值为( ) A. B.2 C. D.2 【分析】通过分析图象,点F从点A到D用as,此时,△FBC的面积为a,依此可求菱形的高DE,再由图象可知,BD=,应用两次勾股定理分别求BE和a. 【解答】解:过点D作DE⊥BC于点E 由图象可知,点F由点A到点D用时为as,△FBC的面积为acm2. ∴AD=a ∴ ∴DE=2 当点F从D到B时,用s ∴BD= Rt△DBE中, BE= ∵ABCD是菱形 ∴EC=a﹣1,DC=a Rt△DEC中, a2=22+(a﹣1)2 解得a= 故选:C. 【点评】本题综合考查了菱形性质和一次函数图象性质,解答过程中要注意函数图象变化与动点位置之间的关系. 二、细心填一填(本大题共5小题,每小题3分,满分15分,请把答案填在答題卷相应题号的横线上) 11.(3分)计算:|﹣5|﹣= 2 . 【分析】直接利用二次根式以及绝对值的性质分别化简得出答案. 【解答】解:原式=5﹣3 =2. 故答案为:2. 【点评】此题主要考查了实数运算,正确化简各数是解题关键. 12.(3分)如图,直线AB,CD相交于点O,EO⊥AB于点O,∠EOD=50°,则∠BOC的度数为 140° . 【分析】直接利用垂直的定义结合互余以及互补的定义分析得出答案. 【解答】解:∵直线AB,CD相交于点O,EO⊥AB于点O, ∴∠EOB=90°, ∵∠EOD=50°, ∴∠BOD=40°, 则∠BOC的度数为:180°﹣40°=140°. 故答案为:140°. 【点评】此题主要考查了垂直的定义、互余以及互补的定义,正确把握相关定义是解题关键. 13.(3分)不等式组的最小整数解是 ﹣2 . 【分析】先求出每个不等式的解集,再求出不等式组的解集,即可得出答案. 【解答】解: ∵解不等式①得:x>﹣3, 解不等式②得:x≤1, ∴不等式组的解集为﹣3<x≤1, ∴不等式组的最小整数解是﹣2, 故答案为:﹣2. 【点评】本题考查了解一元一次不等式组和不等式组的整数解,能根据不等式的解集得出不等式组的解集是解此题的关键. 14.(3分)如图,在△ABC中,∠ACB=90°,AC=BC=2,将△ABC绕AC的中点D逆时针旋转90°得到△A'B′C',其中点B的运动路径为,则图中阴影部分的面积为 π . 【分析】利用弧长公式L=,计算即可; 【解答】解:△ABC绕AC的中点D逆时针旋转90°得到△A'B′C',此时点A′在斜边AB上,CA′⊥AB, ∴∠ACA′=∠BCA′=45°, ∴∠BCB′=135°, ∴S阴==π. 【点评】本题考查旋转变换、弧长公式等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型. 15.(3分)如图,∠MAN=90°,点C在边AM上,AC=4,点B为边AN上一动点,连接BC,△A′BC与△ABC关于BC所在直线对称,点D,E分别为AC,BC的中点,连接DE并延长交A′B所在直线于点F,连接A′E.当△A′EF为直角三角形时,AB的长为 4或4 . 【分析】当△A′EF为直角三角形时,存在两种情况: ①当∠A'EF=90°时,如图1,根据对称的性质和平行线可得:A'C=A'E=4,根据直角三角形斜边中线的性质得:BC=2A'B=8,最后利用勾股定理可得AB的长; ②当∠A'FE=90°时,如图2,证明△ABC是等腰直角三角形,可得AB=AC=4. 【解答】解:当△A′EF为直角三角形时,存在两种情况: ①当∠A'EF=90°时,如图1, ∵△A′BC与△ABC关于BC所在直线对称, ∴A'C=AC=4,∠ACB=∠A'CB, ∵点D,E分别为AC,BC的中点, ∴D、E是△ABC的中位线, ∴DE∥AB, ∴∠CDE=∠MAN=90°, ∴∠CDE=∠A'EF, ∴AC∥A'E, ∴∠ACB=∠A'EC, ∴∠A'CB=∠A'EC, ∴A'C=A'E=4, Rt△A'CB中,∵E是斜边BC的中点, ∴BC=2A'B=8, 由勾股定理得:AB2=BC2﹣AC2, ∴AB==4; ②当∠A'FE=90°时,如图2, ∵∠ADF=∠A=∠DFB=90°, ∴∠ABF=90°, ∵△A′BC与△ABC关于BC所在直线对称, ∴∠ABC=∠CBA'=45°, ∴△ABC是等腰直角三角形, ∴AB=AC=4; 综上所述,AB的长为4或4; 故答案为:4或4; 【点评】本题考查了三角形的中位线定理、勾股定理、轴对称的性质、等腰直角三角形的判定、直角三角形斜边中线的性质,并利用分类讨论的思想解决问题. 三、计算题(本大题共8题,共75分,请认真读题) 16.(8分)先化简,再求值:(﹣1)÷,其中x=+1. 【分析】根据分式的运算法则即可求出答案, 【解答】解:当x=+1时, 原式=• =1﹣x =﹣ 【点评】本题考查分式的运算,解题的关键是熟练运用分式的运算法则,本题属于基础题型. 17.(9分)每到春夏交替时节,雌性杨树会以满天飞絮的方式来传播下一代,漫天飞舞的杨絮易引发皮肤病、呼吸道疾病等,给人们造成困扰,为了解市民对治理杨絮方法的赞同情况,某课题小组随机调查了部分市民(问卷调查表如表所示),并根据调查结果绘制了如下尚不完整的统计图. 治理杨絮一一您选哪一项?(单选) A.减少杨树新增面积,控制杨树每年的栽种量 B.调整树种结构,逐渐更换现有杨树 C.选育无絮杨品种,并推广种植 D.对雌性杨树注射生物干扰素,避免产生飞絮 E.其他 根据以上统计图,解答下列问题: (1)本次接受调查的市民共有 2000 人; (2)扇形统计图中,扇形E的圆心角度数是 28.8° ; (3)请补全条形统计图; (4)若该市约有90万人,请估计赞同“选育无絮杨品种,并推广种植”的人数. 【分析】(1)将A选项人数除以总人数即可得; (2)用360°乘以E选项人数所占比例可得; (3)用总人数乘以D选项人数所占百分比求得其人数,据此补全图形即可得; (4)用总人数乘以样本中C选项人数所占百分比可得. 【解答】解:(1)本次接受调查的市民人数为300÷15%=2000人, 故答案为:2000; (2)扇形统计图中,扇形E的圆心角度数是360°×=28.8°, 故答案为:28.8°; (3)D选项的人数为2000×25%=500, 补全条形图如下: (4)估计赞同“选育无絮杨品种,并推广种植”的人数为70×40%=28(万人). 【点评】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小. 18.(9分)如图,反比例函数y=(x>0)的图象过格点(网格线的交点)P. (1)求反比例函数的解析式; (2)在图中用直尺和2B铅笔画出两个矩形(不写画法),要求每个矩形均需满足下列两个条件: ①四个顶点均在格点上,且其中两个顶点分别是点O,点P; ②矩形的面积等于k的值. 【分析】(1)将P点坐标代入y=,利用待定系数法即可求出反比例函数的解析式; (2)根据矩形满足的两个条件画出符合要求的两个矩形即可. 【解答】解:(1)∵反比例函数y=(x>0)的图象过格点P(2,2), ∴k=2×2=4, ∴反比例函数的解析式为y=; (2)如图所示: 矩形OAPB、矩形OCDP即为所求作的图形. 【点评】本题考查了作图﹣应用与设计作图,反比例函数图象上点的坐标特征,待定系数法求反比例函数解析式,矩形的判定与性质,正确求出反比例函数的解析式是解题的关键. 19.(9分)如图,AB是⊙O的直径,DO⊥AB于点O,连接DA交⊙O于点C,过点C作⊙O的切线交DO于点E,连接BC交DO于点F. (1)求证:CE=EF; (2)连接AF并延长,交⊙O于点G.填空: ①当∠D的度数为 30° 时,四边形ECFG为菱形; ②当∠D的度数为 22.5° 时,四边形ECOG为正方形. 【分析】(1)连接OC,如图,利用切线的性质得∠1+∠4=90°,再利用等腰三角形和互余证明∠1=∠2,然后根据等腰三角形的判定定理得到结论; (2)①当∠D=30°时,∠DAO=60°,证明△CEF和△FEG都为等边三角形,从而得到EF=FG=GE=CE=CF,则可判断四边形ECFG为菱形; ②当∠D=22.5°时,∠DAO=67.5°,利用三角形内角和计算出∠COE=45°,利用对称得∠EOG=45°,则∠COG=90°,接着证明△OEC≌△OEG得到∠OEG=∠OCE=90°,从而证明四边形ECOG为矩形,然后进一步证明四边形ECOG为正方形. 【解答】(1)证明:连接OC,如图, ∵CE为切线, ∴OC⊥CE, ∴∠OCE=90°,即∠1+∠4=90°, ∵DO⊥AB, ∴∠3+∠B=90°, 而∠2=∠3, ∴∠2+∠B=90°, 而OB=OC, ∴∠4=∠B, ∴∠1=∠2, ∴CE=FE; (2)解:①当∠D=30°时,∠DAO=60°, 而AB为直径, ∴∠ACB=90°, ∴∠B=30°, ∴∠3=∠2=60°, 而CE=FE, ∴△CEF为等边三角形, ∴CE=CF=EF, 同理可得∠GFE=60°, 利用对称得FG=FC, ∵FG=EF, ∴△FEG为等边三角形, ∴EG=FG, ∴EF=FG=GE=CE, ∴四边形ECFG为菱形; ②当∠D=22.5°时,∠DAO=67.5°, 而OA=OC, ∴∠OCA=∠OAC=67.5°, ∴∠AOC=180°﹣67.5°﹣67.5°=45°, ∴∠AOC=45°, ∴∠COE=45°, 利用对称得∠EOG=45°, ∴∠COG=90°, 易得△OEC≌△OEG, ∴∠OEG=∠OCE=90°, ∴四边形ECOG为矩形, 而OC=OG, ∴四边形ECOG为正方形. 故答案为30°,22.5°. 【点评】本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.也考查了菱形和正方形的判定. 20.(9分)“高低杠”是女子体操特有的一个竞技项目,其比赛器材由高、低两根平行杠及若干支架组成,运动员可根据自己的身高和习惯在规定范围内调节高、低两杠间的距离.某兴趣小组根据高低杠器材的一种截面图编制了如下数学问题,请你解答. 如图所示,底座上A,B两点间的距离为90cm.低杠上点C到直线AB的距离CE的长为155cm,高杠上点D到直线AB的距离DF的长为234cm,已知低杠的支架AC与直线AB的夹角∠CAE为82.4°,高杠的支架BD与直线AB的夹角∠DBF为80.3°.求高、低杠间的水平距离CH的长.(结果精确到1cm,参考数据sin82.4°≈0.991,cos82.4°≈0.132,tan82.4°≈7.500,sin80.3°≈0.983,cos80.3°≈0.168,tan80.3°≈5.850) 【分析】利用锐角三角函数,在Rt△ACE和Rt△DBF中,分别求出AE、BF的长.计算出EF.通过矩形CEFH得到CH的长. 【解答】解:在Rt△ACE中, ∵tan∠CAE=, ∴AE==≈≈21(cm) 在Rt△DBF中, ∵tan∠DBF=, ∴BF==≈=40(cm) ∵EF=EA+AB+BF≈21+90+40=151(cm) ∵CE⊥EF,CH⊥DF,DF⊥EF ∴四边形CEFH是矩形, ∴CH=EF=151cm 答:高、低杠间的水平距离CH的长为151cm. 【点评】本题考查了锐角三角函数解直角三角形.题目难度不大,注意精确度. 21.(10分)某公司推出一款产品,经市场调查发现,该产品的日销售量y(个)与销售单价x(元)之间满足一次函数关系关于销售单价,日销售量,日销售利润的几组对应值如表: 销售单价x(元) 85 95 105 115 日销售量y(个) 175 125 75 m 日销售利润w(元) 875 1875 1875 875 (注:日销售利润=日销售量×(销售单价﹣成本单价)) (1)求y关于x的函数解析式(不要求写出x的取值范围)及m的值; (2)根据以上信息,填空: 该产品的成本单价是 80 元,当销售单价x= 100 元时,日销售利润w最大,最大值是 2000 元; (3)公司计划开展科技创新,以降低该产品的成本,预计在今后的销售中,日销售量与销售单价仍存在(1)中的关系.若想实现销售单价为90元时,日销售利润不低于3750元的销售目标,该产品的成本单价应不超过多少元? 【分析】(1)根据题意和表格中的数据可以求得y关于x的函数解析式; (2)根据题意可以列出相应的方程,从而可以求得生产成本和w的最大值; (3)根据题意可以列出相应的不等式,从而可以取得科技创新后的成本. 【解答】解;(1)设y关于x的函数解析式为y=kx+b, ,得, 即y关于x的函数解析式是y=﹣5x+600, 当x=115时,y=﹣5×115+600=25, 即m的值是25; (2)设成本为a元/个, 当x=85时,875=175×(85﹣a),得a=80, w=(﹣5x+600)(x﹣80)=﹣5x2+1000x﹣48000=﹣5(x﹣100)2+2000, ∴当x=100时,w取得最大值,此时w=2000, 故答案为:80,100,2000; (3)设科技创新后成本为b元, 当x=90时, (﹣5×90+600)(90﹣b)≥3750, 解得,b≤65, 答:该产品的成本单价应不超过65元. 【点评】本题考查二次函数的应用、一元二次方程的应用、不等式的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用函数和数形结合的思想解答. 22.(10分)(1)问题发现 如图1,在△OAB和△OCD中,OA=OB,OC=OD,∠AOB=∠COD=40°,连接AC,BD交于点M.填空: ①的值为 1 ; ②∠AMB的度数为 40° . (2)类比探究 如图2,在△OAB和△OCD中,∠AOB=∠COD=90°,∠OAB=∠OCD=30°,连接AC交BD的延长线于点M.请判断的值及∠AMB的度数,并说明理由; (3)拓展延伸 在(2)的条件下,将△OCD绕点O在平面内旋转,AC,BD所在直线交于点M,若OD=1,OB=,请直接写出当点C与点M重合时AC的长. 【分析】(1)①证明△COA≌△DOB(SAS),得AC=BD,比值为1; ②由△COA≌△DOB,得∠CAO=∠DBO,根据三角形的内角和定理得:∠AMB=180°﹣(∠DBO+∠OAB+∠ABD)=180°﹣140°=40°; (2)根据两边的比相等且夹角相等可得△AOC∽△BOD,则=,由全等三角形的性质得∠AMB的度数; (3)正确画图形,当点C与点M重合时,有两种情况:如图3和4,同理可得:△AOC∽△BOD,则∠AMB=90°,,可得AC的长. 【解答】解:(1)问题发现 ①如图1,∵∠AOB=∠COD=40°, ∴∠COA=∠DOB, ∵OC=OD,OA=OB, ∴△COA≌△DOB(SAS), ∴AC=BD, ∴=1, ②∵△COA≌△DOB, ∴∠CAO=∠DBO, ∵∠AOB=40°, ∴∠OAB+∠ABO=140°, 在△AMB中,∠AMB=180°﹣(∠CAO+∠OAB+∠ABD)=180°﹣(∠DBO+∠OAB+∠ABD)=180°﹣140°=40°, 故答案为:①1;②40°; (2)类比探究 如图2,=,∠AMB=90°,理由是: Rt△COD中,∠DCO=30°,∠DOC=90°, ∴, 同理得:, ∴, ∵∠AOB=∠COD=90°, ∴∠AOC=∠BOD, ∴△AOC∽△BOD, ∴=,∠CAO=∠DBO, 在△AMB中,∠AMB=180°﹣(∠MAB+∠ABM)=180°﹣(∠OAB+∠ABM+∠DBO)=90°; (3)拓展延伸 ①点C与点M重合时,如图3,同理得:△AOC∽△BOD, ∴∠AMB=90°,, 设BD=x,则AC=x, Rt△COD中,∠OCD=30°,OD=1, ∴CD=2,BC=x﹣2, Rt△AOB中,∠OAB=30°,OB=, ∴AB=2OB=2, 在Rt△AMB中,由勾股定理得:AC2+BC2=AB2, , x2﹣x﹣6=0, (x﹣3)(x+2)=0, x1=3,x2=﹣2, ∴AC=3; ②点C与点M重合时,如图4,同理得:∠AMB=90°,, 设BD=x,则AC=x, 在Rt△AMB中,由勾股定理得:AC2+BC2=AB2, +(x+2)2= x2+x﹣6=0, (x+3)(x﹣2)=0, x1=﹣3,x2=2, ∴AC=2; 综上所述,AC的长为3或2. 【点评】本题是三角形的综合题,主要考查了三角形全等和相似的性质和判定,几何变换问题,解题的关键是能得出:△AOC∽△BOD,根据相似三角形的性质,并运用类比的思想解决问题,本题是一道比较好的题目. 23.(11分)如图,抛物线y=ax2+6x+c交x轴于A,B两点,交y轴于点C.直线y=x﹣5经过点B,C. (1)求抛物线的解析式; (2)过点A的直线交直线BC于点M. ①当AM⊥BC时,过抛物线上一动点P(不与点B,C重合),作直线AM的平行线交直线BC于点Q,若以点A,M,P,Q为顶点的四边形是平行四边形,求点P的横坐标; ②连接AC,当直线AM与直线BC的夹角等于∠ACB的2倍时,请直接写出点M的坐标. 【分析】(1)利用一次函数解析式确定C(0,﹣5),B(5,0),然后利用待定系数法求抛物线解析式; (2)①先解方程﹣x2+6x﹣5=0得A(1,0),再判断△OCB为等腰直角三角形得到∠OBC=∠OCB=45°,则△AMB为等腰直角三角形,所以AM=2,接着根据平行四边形的性质得到PQ=AM=2,PQ⊥BC,作PD⊥x轴交直线BC于D,如图1,利用∠PDQ=45°得到PD=PQ=4,设P(m,﹣m2+6m﹣5),则D(m,m﹣5),讨论:当P点在直线BC上方时,PD=﹣m2+6m﹣5﹣(m﹣5)=4;当P点在直线BC下方时,PD=m﹣5﹣(﹣m2+6m﹣5),然后分别解方程即可得到P点的横坐标; ②作AN⊥BC于N,NH⊥x轴于H,作AC的垂直平分线交BC于M1,交AC于E,如图2,利用等腰三角形的性质和三角形外角性质得到∠AM1B=2∠ACB,再确定N(3,﹣2), AC的解析式为y=5x﹣5,E点坐标为(,﹣),利用两直线垂直的问题可设直线EM1的解析式为y=﹣x+b,把E(,﹣)代入求出b得到直线EM1的解析式为y=﹣x﹣,则解方程组得M1点的坐标;作直线BC上作点M1关于N点的对称点M2,如图2,利用对称性得到∠AM2C=∠AM1B=2∠ACB,设M2(x,x﹣5),根据中点坐标公式得到3=,然后求出x即可得到M2的坐标,从而得到满足条件的点M的坐标. 【解答】解:(1)当x=0时,y=x﹣5=﹣5,则C(0,﹣5), 当y=0时,x﹣5=0,解得x=5,则B(5,0), 把B(5,0),C(0,﹣5)代入y=ax2+6x+c得,解得, ∴抛物线解析式为y=﹣x2+6x﹣5; (2)①解方程﹣x2+6x﹣5=0得x1=1,x2=5,则A(1,0), ∵B(5,0),C(0,﹣5), ∴△OCB为等腰直角三角形, ∴∠OBC=∠OCB=45°, ∵AM⊥BC, ∴△AMB- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 河南省 2018 年中 数学试卷 答案 解析 word
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【快乐****生活】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【快乐****生活】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【快乐****生活】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【快乐****生活】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文