分享
分销 收藏 举报 申诉 / 23
播放页_导航下方通栏广告

类型4PID控制.pptx

  • 上传人:a199****6536
  • 文档编号:4288013
  • 上传时间:2024-09-03
  • 格式:PPTX
  • 页数:23
  • 大小:385.19KB
  • 下载积分:10 金币
  • 播放页_非在线预览资源立即下载上方广告
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    PID 控制
    资源描述:
    Tuesday,September 3,20241第四节 PID控制Tuesday,September 3,20242概述 在当今应用的工业控制器中,半数以上采用了PID或变形PID控制方案。PID控制器分为模拟和数字控制器两种。模拟PID控制器通常是电子、气动或液压型的,数字PID控制器是由计算机实现的。大多数PID控制器的参数是现场调节的。PID控制的价值取决于它对于大多数控制系统广泛的适应性。也就是说,PID控制器现在还大量地在工业现场使用着。虽然在许多给定的情况下还不能提供最佳控制。什么是PID控制?它是比例、积分和微分控制的简称。即:Proportional-Integral-Differential Controller Tuesday,September 3,20243 下图表示了一种控制对象的PID控制。它是串联在系统的前向通道中的,这是一种最常见的形式。PID控制器的时域表达式为:式中,u(t)是PID控制器的输出信号,e(t)是PID控制器的输入信号,也就是系统的误差信号。Kp称为比例系数,Ti、Td分别称为积分和微分时间常数。-PID控制器控制对象 PID控制器又称为比例-积分-微分控制器。Tuesday,September 3,20244 上页所示的PID表达式(8.4.1)即是通常所说的常规PID控制器。常规PID控制器可以采用多种形式进行工作。主要有以下几种,分别称为:q 比例控制器:q 比例-积分控制器:q 比例-微分控制器:q 比例-积分-微分控制器:在某些特殊的情况下,PID控制器可以进行适当的变形,以适应系统控制的要求。这些控制器称为变形的PID控制器。比如,积分分离PID控制器,变速PID控制器,微分先行PID控制器,抗饱和PID控制器,Fuzzy PID控制器等形式。Tuesday,September 3,20245v PID控制器的传递函数如下:v PID控制器的结构图如下:-控制对象v 将PID控制器应用于控制系统实例:Tuesday,September 3,20246 PID控制器每一部分对控制系统的作用:q 比例部分:增加比例系数可加快系统的响应速度,减小稳态 误差;但比例系数太大会影响系统的稳定性。q 积分部分:积分时间常数越小,积分作用越强。积分控制作用可以消除系统的稳态误差;但积分作用太大,会使系统的稳定性下降。q 微分部分:微分时间常数越大,微分作用越强。微分作用能够反映反映误差信号的变化速度。变化速度越大,微分作用越强,从而有助于减小震荡,增加系统的稳定性。但是。微分作用对高频误差信号(不管幅值大小)很敏感。如果系统存在高频小幅值的噪音,则它形成的微分作用可能会很大,这是不希望出现的。Tuesday,September 3,20247例8-4-1比例作用kp对控制系统的影响。解:考虑kp对扰动作用 的影响时,令R(s)=0可见,增加比例系数可以减小稳态误差。Tuesday,September 3,20248再来看kp对响应速度的影响情况:该系统是二阶系统,则带宽约为 (这是一种保守的估计)。而 所以,比例系数增加时,系统的带宽增加,这样就提高了系统的响应速度(提高了快速性)。但是kp太大时,系统会减低相对稳定性。该系统的特征方程为:,特征根为:,可以看出:当kp较小时,特征根为负实根,当kp增大时,特征根变为共轭复根,且虚部随kp的增大而增大。我们知道虚部表示响应曲线的震荡频率。所以kp增大,影响系统的相对稳定性。在本例中,不影响绝对稳定性。但不代表其它系统的结论。Tuesday,September 3,20249例8-4-2比例-积分作用对系统的影响。上例中,若控制器选择比例-积分控制器,则扰动传递函数为:扰动误差为(令R(s)=0):系统对单位阶跃扰动响应的稳态误差为:可见,增加积分作用可以消除稳态误差。Tuesday,September 3,202410例8-4-3比例-微分作用对系统的影响。上例中,若控制器选择比例-微分控制器,则扰动传递函数为:闭环传递函数为:该系统的阻尼系数为:可见,增加微分作用可以使系统的阻尼系数增加,从而减小超调量,增加稳定性。Tuesday,September 3,202411PID控制器参数与系统时域性能指标间的关系参数名称上升时间超调量调整时间稳态误差Kp减小增大微小变化减小Ki(1/Ti)减小增大增大消除Kd(Td)微小变化减小减小微小变化 PID控制器参数选择的次序:比例系数;积分系数;微分系数。Tuesday,September 3,202412用Matlab讨论PID控制器的效果Tuesday,September 3,202413例8-4-4考虑我们熟悉的质量-弹簧-阻尼系统。其中外力F为输入,位移x为输出。参数为:1M=1kg,b=10N.s/m,k=20N/m,F=1。试设计不同的P、PD、PI、PID控制器,使应曲线满足:q 位移稳态值为1;q 较快的上升时间和过度过程时间;q 较小的超调量;q 静态误差为零。例8-4-5图Tuesday,September 3,202414解:求出系统的闭环传递函数为:q 求解未加入任何校正装置的系统的阶跃响应clear all;num=0 0 1;den=1 10 20;h=tf(num,den);step(h)显然,响应速度太慢,稳态误差太大了。不能满足要求。可考虑使用P控制。Tuesday,September 3,202415q 比例控制器(P)控制器设计:我们知道增加比例系数Kp可以降低稳态误差,减小上升时间和过渡时间,因此首先选择比例控制,也就是在系统串联一个比例放大器。把原始的系统看作开环系统,加入比例控制器,并构成闭环系统。闭环系统的结构图和传递函数分别为:Tuesday,September 3,202416加入比例控制器后的阶跃响应曲线图如下:num1=0 0 100;den1=1 10 20+100;num2=0 0 300;den2=1 10 20+300;num3=0 0 500;den3=1 10 20+500;h1=tf(num1,den1);h2=tf(num2,den2);h3=tf(num3,den3);step(h1,h2,h3)从上图可以看出:随着比例系数Kp的增加,响应速度越来越快,稳态误差越来越小,但不能完全消除。超调量越来越大。可以考虑采用比例加微分控制器来减小超调量。Tuesday,September 3,202417q 比例+微分(PD)控制器设计:我们知道增加微分系数Kd可以降低超调量,减小过渡时间,对上升时间和稳态误差影响不大。因此可以选择比例微分控制,也就是在系统中串联一个比例放大器和一个微分器。把原始的系统看作开环系统,加入比例微分控制器,并构成闭环系统。闭环系统的结构图和传递函数分别为:Tuesday,September 3,202418选择Kp=300,Kd=10,加入比例微分控制器后的阶跃响应曲线图如下(红线表示使用微分控制,蓝线表示未使用微分控制):clear all;num1=0 0 300;den1=1 10 20+300;num2=0 10 300;den2=1 10+10 20+300;h1=tf(num1,den1);h2=tf(num2,den2);t=0:0.01:1.2;step(h1,h2)从上图可以看出:加入微分控制后,在其他控制参数不变的情况下,系统超调量下降很多,震荡次数明显减少,其他性能指标不变。现在的问题是稳态误差不为零,可用积分控制来解决。Tuesday,September 3,202419q 比例+积分(PI)控制器设计:我们知道增加积分系数Ki可以消除稳态误。因此为了消除稳态误差,可以考虑选择比例积分控制,也就是在系统中串联一个比例放大器和一个积分器。把原始的系统看作开环系统,加入比例积分控制器,并构成闭环系统。闭环系统的结构图和传递函数分别为:Tuesday,September 3,202420 考虑到加入积分作用会影响稳定性,因此,加入积分作用时,要减小比例作用。加入比例积分控制器后的阶跃响应曲线图如下:左图显示了未加入和加入积分作用时的单位阶跃响应曲线。加入积分作用时,需减小比例作用。右图显示了不减小比例作用时的结果。加入积分作用的缺点:增加调整时间,降低快速性。优点:消除稳态误差。如果希望系统各方面的性能指标都达到满意的程度,一般要采取PID控制。Tuesday,September 3,202421q 比例+积分+微分(PID)控制器设计:对于相当多的实际系统,采用PID控制一般都能取得满意的效果。PID控制器的三个参数选择采用试凑法或一些经验公式获得。把原始的系统看作开环系统,加入比例积分微分控制器,并构成闭环系统。闭环系统的结构图和传递函数分别为:Tuesday,September 3,202422加入比例积分微分控制器后的阶跃响应曲线图如下:clear all;Kp=600;Ki=800;%Ki=1/TiKd=50;%Kd=1/Tdnum=0 Kd Kp Ki;den=1 10+Kd 20+Kp Ki;h=tf(num,den);step(h)可见,系统的性能指标已经相当好了。应当注意的是,PID控制器的三个参数的选择不是唯一的。PID控制器的控制效果能够达到满意的结果,但不一定获得最优的结果。Tuesday,September 3,202423小结PID控制器的时域表达式PID控制器的传递函数PID控制器三个参数对系统性能指标的影响应用Matlab工具进行系统PID控制的仿真
    展开阅读全文
    提示  咨信网温馨提示:
    1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
    2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
    3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
    4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
    5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
    6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

    开通VIP折扣优惠下载文档

    自信AI创作助手
    关于本文
    本文标题:4PID控制.pptx
    链接地址:https://www.zixin.com.cn/doc/4288013.html
    页脚通栏广告

    Copyright ©2010-2026   All Rights Reserved  宁波自信网络信息技术有限公司 版权所有   |  客服电话:0574-28810668    微信客服:咨信网客服    投诉电话:18658249818   

    违法和不良信息举报邮箱:help@zixin.com.cn    文档合作和网站合作邮箱:fuwu@zixin.com.cn    意见反馈和侵权处理邮箱:1219186828@qq.com   | 证照中心

    12321jubao.png12321网络举报中心 电话:010-12321  jubao.png中国互联网举报中心 电话:12377   gongan.png浙公网安备33021202000488号  icp.png浙ICP备2021020529号-1 浙B2-20240490   


    关注我们 :微信公众号  抖音  微博  LOFTER               

    自信网络  |  ZixinNetwork