概率练习题(含答案).doc
《概率练习题(含答案).doc》由会员分享,可在线阅读,更多相关《概率练习题(含答案).doc(8页珍藏版)》请在咨信网上搜索。
概率练习题(含答案) 1 解答题 有两颗正四面体的玩具,其四个面上分别标有数字1,2,3,4,下面做投掷这两颗正四面体玩具的试验:用(x,y)表示结果,其中x表示第1颗正四面体玩具出现的点数,y表示第2颗正四面体玩具出现的点数.试写出: (1)试验的基本事件; (2)事件“出现点数之和大于3”; (3)事件“出现点数相等”. 答案 (1)这个试验的基本事件为: (1,1),(1,2),(1,3),(1,4), (2,1),(2,2),(2,3),(2,4), (3,1),(3,2),(3,3),(3,4), (4,1),(4,2),(4,3),(4,4) (2)事件“出现点数之和大于3”包含以下13个基本事件: (1,3),(1,4),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3), (3,4),(4,1),(4,2),(4,3),(4,4) (3)事件“出现点数相等”包含以下4个基本事件: (1,1),(2,2),(3,3),(4,4) 2 单选题 “概率”的英文单词是“Probability”,如果在组成该单词的所有字母中任意取出一个字母,则取到字母“b”的概率是 1. A. 2. B. 3. C. 4. D. 1 答案 C 解析 分析:先数出单词的所有字母数,再让字母“b”的个数除以所有字母的总个数即为所求的概率. 解答:“Probability”中共11个字母,其中共2个“b”,任意取出一个字母,有11种情况可能出现,取到字母“b”的可能性有两种, 故其概率是; 故选C. 点评:此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=. 3 解答题 一只口袋内装有大小相同的5只球,其中3只白球,2只黑球.现从口袋中每次任取一球,每次取出不放回,连续取两次.问: (1)取出的两只球都是白球的概率是多少? (2)取出的两只球至少有一个白球的概率是多少? 答案 (1)取出的两只球都是白球的概率为3/10; (2)以取出的两只球中至少有一个白球的概率为9/10。 解析 本题主要考查了等可能事件的概率,以及对立事件和古典概型的概率等有关知识,属于中档题 (1)分别记白球为1,2,3号,黑球为4,5号,然后例举出一切可能的结果组成的基本事件,然后例举出取出的两只球都是白球的基本事件,然后根据古典概型的概率公式进行求解即可; (2)“取出的两只球中至少有一个白球的事件”的对立事件是“取出的两只球均为黑球”,例举出取出的两只球均为黑球的基本事件,求出其概率,最后用1去减之,即可求出所求. 解::(1)分别记白球为1,2,3号,黑球为4,5号.从口袋中每次任取一球,每次取出不放回,连续取两次, 其一切可能的结果组成的基本事件(第一次摸到1号,第二次摸到2号球用(1,2)表示)空间为: Ω={(1,2),(2,1),(1,3),(3,1),(1,4),(4,1),(1,5),(5,1),(2,3),(3,2),(2,4),(4,2),(2,5),(5,2),(3,4),(4,3),(3,5),(5,3),(4,5),(5,4)}, 共有20个基本事件,且上述20个基本事件发生的可能性相同. 记“取出的两只球都是白球”为事件A. A={(1,2),(2,1),(1,3),(3,1),(2,3),(3,2)},共有6个基本事件. 故P(A)=6/20=3/10 所以取出的两只球都是白球的概率为3/10 (2)设“取出的两只球中至少有一个白球”为事件B,则其对立事件B 为“取出的两只球均为黑球” .B={(4,5),(5,4)},共有2个基本事件. 则P(B)=1-P(B)=1-2/20=9/10 所以取出的两只球中至少有一个白球的概率为9/10 4 填空题 概率的范围P是________,不可能事件的概率为________. 答案 0≤P≤1 0 解析 分析:从概率的统计定义可知,对任意事件A,皆有0≤P(A)≤1,不可能事件(在一定条件下必然不发生的事件),概率为0. 解答:概率的范围是0≤x≤1,不可能事件的概率为0. 点评:生活中的事件分为确定事件和不确定事件,确定事件又分为必然事件和不可能事件,其中必然事件发生的概率为1,即P(必然事件)=1;不可能事件发生的概率为0,即P(不可能事件)=0;如果A为不确定事件,那么0<P(A)<1. 5 单选题 一次抛掷三枚均匀的硬币,求下列事件的概率:正好一个正面朝上的概率是 1. A. 2. B. 3. C. 4. D. 答案 B 解析 分析:列举出所有情况,看正好一个正面朝上的情况占总情况的多少即可. 解答:所有机会均等的可能共有正正正,正正反,正反正,正反反,反正正,反正反,反反正,反反反8种. 而正好一面朝上的机会有3种,所以正好一个正面朝上的概率是. 故选B. 点评:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=. 6解答题 掷一枚质地均匀的骰子,分别计算下列事件的概率: (1)出现点数3; (2)出现的点数是偶数. 答案 解:掷一个质地均匀的骰子,有6种情况,即1、2、3、4、5、6, (1)出现的点数3的有1种,故其概率是; (2)出现的点数为偶数的有3种,故其概率是 . 解析 分析:(1)让出现的点数3的情况数除以总情况数6; (2)让出现的点数为偶数的情况数除以总情况数6即为所求的概率. 点评:本题考查的是概率的求法.如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=. 7 解答题 同时掷两个质地均匀的骰子,计算下列事件的概率: (Ⅰ)两个骰子的点数相同; (Ⅱ)至少有一个骰子点数为5. 答案 解:共有36种情况. 1 2 3 4 5 6 1 (1,1) (1,2) (1,3) (1,4) (1,5) (1,6) 2 (2,1) (2,2) (2,3) (2,4) (2,5) (2,6) 3 (3,1) (3,2) (3,3) (3,4) (3,5) (3,6) 4 (4,1) (4,2) (4,3) (4,4) (4,5) (4,6) 5 (5,1) (5,2) (5,3) (5,4) (5,5) (5,6) 6 (6,1) (6,2) (6,3) (6,4) (6,5) (6,6) (1)满足两个骰子点数相同(记为事件A)的结果有6个即: (1,1),(2,2),(3,3),(4,4),(5,5),(6,6), 所以; (2)将至少有一个骰子点数为5记为事件B,则满足该事件条件的结果共有11个,所以. 解析 分析:(1)列举出所有情况,看两个骰子的点数相同的情况占总情况的多少即可; (2)看至少有一个骰子点数为5的情况占总情况的多少即可. 点评:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=,注意本题是放回实验,找到两个骰子点数相同的情况数和至少有一个骰子点数为5的情况数是关键. 8 解答题 掷一个骰子,观察向上一面的点数,求下列事件的概率: (1)点数为偶数; (2)点数大于2且小于5. 答案 解:掷一个骰子,向上一面的点数可能为1,2,3,4,5,6,共6种.这些点数出现的可能性相等. (1)点数为偶数有3种可能,即点数为2,4,6, ∴P(点数为偶数)=; (2)点数大于2且小于5有2种可能,即点数为3,4, ∴P(点数大于2且小于5)=. 解析 分析:根据随机事件概率大小的求法,找准两点: ①符合条件的情况数目; ②全部情况的总数. 二者的比值就是其发生的概率的大小. 点评:本题考查随机事件率的求法与运用.一般方法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=. 9 解答题 掷一个质地均匀的骰子,观察向下的一面的点数,求下列事件的概率 (1)点数为2; (2)点数为奇数; (3)点数大于2且小于5. 答案 解:(1)P(点数为2)=; (2)点数为奇数的有3种可能,即点数为1,3,5,则P(点数为奇数)==; (3)点数大于2且小于5的有2种可能,就点数为3,4, 则P(点数大于2且小于5)==. 解析 分析:根据概率的求法,找准两点: 1、全部情况的总数; 2、符合条件的情况数目;二者的比值就是其发生的概率. 点评:此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=. 10 解答题 某同学同时掷两个质地均匀的骰子,计算下列事件的概率: (1)两个骰子的点数相同; (2)两个骰子的点数的和为8; (3)至少有一个骰子的点数是3. 答案 解:同时掷两个质地均匀的骰子共有36种情况 1 2 3 4 5 6 1 (1,1) (1,2) (1,3) (1,4) (1,5) (1,6) 2 (2,1) (2,2) (2,3) (2,4) (2,5) (2,6) 3 (3,1) (3,2) (3,3) (3,4) (3,5) (3,6) 4 (4,1) (4,2) (4,3) (4,4) (4,5) (4,6) 5 (5,1) (5,2) (5,3) (5,4) (5,5) (5,6) 6 (6,1) (6,2) (6,3) (6,4) (6,5) (6,6) . (1)满足两个骰子点数相同(记为事件A)的结果有6个即: (1,1),(2,2),(3,3),(4,4),(5,5),(6,6), 所以 ; (2)将两个骰子的点数的和为8记为事件B,则满足该事件条件的结果有(6,2),(5,3),(4,4),(3,5),(2,6)共5个,所以P(B)=. (3)将至少有一个骰子点数为3记为事件C,则满足该事件条件的结果共有11个,所以 P(C)=. 解析 分析:(1)列举出所有情况,看两个骰子的点数相同的情况占总情况的多少即可; (2)看两个骰子的点数的和为8的情况数占总情况的多少即可解答; (3)看至少有一个骰子点数为3的情况占总情况的多少即可. 点评:本题考查了利用列表法与树状图法求概念的方法:先利用列表法或树状图法展示所有等可能的结果数n,再找出其中某事件可能发生的可能的结果m,然后根据概率的定义计算出这个事件的概率=.注意本题是放回实验,找到两个骰子点数相同的情况数和至少有一个骰子点数为3还有两个骰子的点数的和为8的情况数是关键. 11 解答题 从一副52张的扑克牌中任意抽出一张,求下列事件的概率: (1)抽出一张红心 (2)抽出一张红色老K (3)抽出一张梅花J (4)抽出一张不是Q的牌. 答案 解:∵从一副52张的扑克牌中任意抽出一张, ∴共有52种等可能的结果; (1)∵红心的有13张, ∴P(抽出一张红心)==; (2)∵红色老K的有2张, ∴P(抽出一张红色老K)==; (3)∵梅花J只有1张, ∴P(抽出一张梅花J )=; (4)∵不是Q的牌有52-4=48张, ∴P(抽出一张不是Q的牌)==. 解析 分析:由从一副52张的扑克牌中任意抽出一张,可得共有52种等可能的结果;然后由(1)红心的有13张,(2)红色老K的有2张,(3)梅花J只有1张,(4)不是Q的牌有52-4=48张,直接利用概率公式求解即可求得答案. 点评:此题考查了概率公式的应用.注意概率=所求情况数与总情况数之比. 13 解答题 在单词probability(概率)中任意选择一个字母,求下列事件的概率: (1)字母为“b”的概率为______; (2)字母为“i”的概率为______; (3)字母为“元音”字母的概率为______; (4)字母为“辅音”字母的概率为______. 答案 解:(1)字母b出现两次,其概率为; (2)字母i出现两次,其概率为; (3)a,o,i为元音字母,出现四次,其概率为; (4)“辅音”字母的概率=1-字母为“元音”字母的概率=1-. 解析 分析:总共有11个字母,分别求出所求字母的个数,利用概率公式进行求解即可. 点评:此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 概率 练习题 答案
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【人****来】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【人****来】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【人****来】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【人****来】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文