数学平面向量的坐标运算平面向量共线的坐标表示.pptx
《数学平面向量的坐标运算平面向量共线的坐标表示.pptx》由会员分享,可在线阅读,更多相关《数学平面向量的坐标运算平面向量共线的坐标表示.pptx(20页珍藏版)》请在咨信网上搜索。
2.3.3 2.3.3 平面向量的坐标运算平面向量的坐标运算2.3.4 2.3.4 平面向量共线的坐标表示平面向量共线的坐标表示2.3 平面向量的基本定理及坐标表示平面向量的基本定理及坐标表示 第二章第二章 平面向量平面向量问题提出问题提出1.1.平面向量的基本定理是什么?平面向量的基本定理是什么?若若e1 1、e2 2是同一平面内的两个不共线向量,是同一平面内的两个不共线向量,则对于这一平面内的任意向量则对于这一平面内的任意向量a,有且只有,有且只有一对实数一对实数1 1,2 2,使,使a1e12e2.2.2.用坐标表示向量的基本原理是什么?用坐标表示向量的基本原理是什么?设设i、j是与是与x x轴、轴、y y轴同向的两个单位向轴同向的两个单位向量,若量,若axiyj,则,则a(x x,y y).).3.3.用坐标表示向量,使得向量具有代数用坐标表示向量,使得向量具有代数特征,并且可以将向量的几何运算转化特征,并且可以将向量的几何运算转化为坐标运算,为向量的运算拓展一条新为坐标运算,为向量的运算拓展一条新的途径的途径.我们需要研究的问题是,我们需要研究的问题是,向量向量的和、差、数乘运算,如何转化为坐标的和、差、数乘运算,如何转化为坐标运算,对于共线向量如何通过坐标来反运算,对于共线向量如何通过坐标来反映等映等.探究(一):探究(一):平面向量的坐标运算平面向量的坐标运算 思考思考1 1:设设i、j是与是与x x轴、轴、y y轴同向的两个轴同向的两个单位向量,若单位向量,若a=(x=(x1 1,y y1 1),),b=(x=(x2 2,y y2 2),),则则ax x1 1iy y1 1j,b bx x2 2iy y2 2j,根据向量的线,根据向量的线性运算性质,向量性运算性质,向量ab,ab,a(R)如何分别用基底)如何分别用基底i、j表示?表示?ab(x1x2)i(y1y2)j,ab(x1x2)i(y1y2)j,ax1iy1j.思考思考2 2:根据向量的坐标表示,向量根据向量的坐标表示,向量 ab,ab,a的坐标分别如何?的坐标分别如何?ab(x1x2,y1y2);ab(x1x2,y1y2);a(x1,y1).ab(x1x2)i(y1y2)j,ab(x1x2)i(y1y2)j,ax1iy1j.思考思考3 3:如何用数学语言描述上述向量如何用数学语言描述上述向量的坐标运算?的坐标运算?两个向量和(差)的坐标分别等于这两两个向量和(差)的坐标分别等于这两个向量相应坐标的和(差);个向量相应坐标的和(差);实数与向量的积的坐标等于用这个实数实数与向量的积的坐标等于用这个实数乘原来向量的相应坐标乘原来向量的相应坐标.ab(x1x2,y1y2);ab(x1x2,y1y2);a(x1,y1).驾考宝典网 http:/ http:/ http:/ http:/ http:/ http:/ http:/ 驾照宝典 驾驶宝典o ox xy yB BA A思考思考4 4:如图如图,已知点已知点A(xA(x1 1,y,y1 1),B(x),B(x2 2,y,y2 2),那么向量那么向量 的坐标如何?一般地,一个的坐标如何?一般地,一个任意向量的坐标如何计算?任意向量的坐标如何计算?(x2x1,y2y1).任意一个向量的坐标等于表示该向量任意一个向量的坐标等于表示该向量的有向线段的终点坐标减去始点坐标的有向线段的终点坐标减去始点坐标.思考思考5 5:在上图中,如何确定坐标为在上图中,如何确定坐标为(x(x2 2x x1 1,y y2 2y y1 1)的点的点P P的位置?的位置?o ox xy yB BA AP(xP(x2 2-x-x1 1,y,y2 2-y-y1 1)思考思考6 6:若向量若向量a=(x=(x,y)y),则,则|a|如何计如何计算?若点算?若点A(xA(x1 1,y,y1 1),B(xB(x2 2,y y2 2),则,则 如何计算?如何计算?A Aax xy yO O探究(二):探究(二):平面向量共线的坐标表示平面向量共线的坐标表示 思考思考1 1:如果向量如果向量a,b共线(其中共线(其中b0),),那么那么a,b满足什么关系?满足什么关系?思考思考2 2:设设a=(x1,y1),b=(x2,y2),若向量若向量a,b共线(其中共线(其中b0),则这两个向量的),则这两个向量的坐标应满足什么关系?反之成立吗?坐标应满足什么关系?反之成立吗?ab.向量向量a,b(b0)共线共线 ax xy yO ObA AB BC CD D思考思考3 3:如何用解析几何观点得出上述结如何用解析几何观点得出上述结论?论?向量向量a,b(b0)共线共线 思考思考4 4:已知点已知点P P1 1(x(x1 1,y y1 1),P P2 2(x(x2 2,y y2 2),若点若点P P分别是线段分别是线段P P1 1P P2 2的中点、三等分点,的中点、三等分点,如何用向量方法求点如何用向量方法求点P P的坐标?的坐标?x xy yO OP P2 2P P1 1P PP PP P思考思考5 5:一般地,若点一般地,若点P P1 1(x(x1 1,y y1 1),P P2 2(x(x2 2,y y2 2),点,点P P是直线是直线P P1 1P P2 2上一点,且上一点,且 ,那么点,那么点P P的坐标有何计算公式?的坐标有何计算公式?x xy yO OP P2 2P P1 1P P理论迁移理论迁移 例例1 1 已知已知a=(2,1),=(2,1),b=(=(3,4),3,4),求求 ab,ab,3a4b的坐标的坐标.ab(1,5),ab(5,3),3a4b(6,19).例例2 2 如图,已知如图,已知 ABCDABCD的三个顶点的的三个顶点的坐标分别是坐标分别是A A(-2-2,1 1)、)、B B(-1,3-1,3)、)、C(3,4)C(3,4),试求顶点,试求顶点D D的坐标的坐标.o ox xy yA AB BC CD D D D(2 2,2 2)例例3 3 已知向量已知向量a=(4=(4,2)2),b=(6=(6,y),y),且且ab,求,求y y的值的值.y3 例例4 4 已知点已知点A(-1A(-1,-1)-1),B(1B(1,3)3),C C(2(2,5)5),试判断,试判断A A、B B、C C三点是否共线三点是否共线?,A A、B B、C C三点共线三点共线.小结作业小结作业1.1.向量的坐标运算是根据向量的坐标表向量的坐标运算是根据向量的坐标表示和向量的线性运算律得出的结论,它示和向量的线性运算律得出的结论,它符合实数的运算规律,并使得向量的运符合实数的运算规律,并使得向量的运算完全代数化算完全代数化.2.2.对于两个非零向量共线的坐标表示,对于两个非零向量共线的坐标表示,可借助斜率相等来理解和记忆可借助斜率相等来理解和记忆.3.3.利用向量的坐标运算,可以求点的坐利用向量的坐标运算,可以求点的坐标,判断点共线等问题,这是一种向量标,判断点共线等问题,这是一种向量方法,体现了向量的工具作用方法,体现了向量的工具作用.- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数学 平面 向量 坐标 运算 共线 表示
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【天****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【天****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【天****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【天****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文