稳定性和代数稳定判据.pptx
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 稳定性 代数 稳定 判据
- 资源描述:
-
钟摆的运动 平平衡衡点点(状状态态)为为A、D,对对于于平平衡衡点点A,在在扰扰动动消消失失后后,由由初初始始偏偏差差角角开开始始的的自自由由运运动动随随着着时时间间的的推推移移,摆摆终终究究会会停停止止运运动动并并回回到到平平衡衡点点A,所所以以平平衡衡点点A是是一一个个稳稳定定的的平平衡衡点点(状状态态);对对于于平平衡衡点点D哪哪怕怕是是由由扰扰动动引引起起的的微微小小偏偏差差角角,在在扰扰动动消消失失后后,无无论论经经过过多多长长的的时时间间,摆摆都都不不会会再再回回到到原原来来的的平平衡衡点点D,所所以以平平衡衡点点D是是一个不稳定的平衡点(状态)。一个不稳定的平衡点(状态)。DCBA(1)控制系统稳定的实例:)控制系统稳定的实例:1系统运动的稳定性(2)系统运动稳定性的描述稳定性描述:线性系统受到扰动的作用而使被控量产生偏差,当扰动消失后,随着时间的推移,该偏差逐渐减小并趋于零,即被控量回到原来的平衡工作状态,则称该系统稳定。反之,若在扰动的影响下,系统的被控量随着时间的推移而发散,则称系统不稳定。通通过过前前面面关关于于系系统统动动态态性性能能的的分分析析可可知知,线线性性系系统统由由扰扰动动作作用用而而使使被被控控量量产产生生偏偏差差,当当扰扰动动消消失失后后,偏偏差差能能否否“消消失失”,实实际际上上是是指指系系统统的的暂暂态态响响应应能能否否消消失失,若若暂暂态态响响应应能能消消失失的的,则则系系统统是是稳稳定定的的,若若暂暂态态响响应应不不能能消消失失,则则系系统统是是不不稳稳定定。对对于于暂暂态态响响应应不不能能消消失失有有2种种情情况况,一一种种情情况况是是系系统统的的暂暂态态响响应应呈呈现现发发散散状状态态,另另外外一一种种情情况况是是系系统统的的暂暂态态响响应应呈呈现现等等幅幅振振荡荡状状态态,对对于于等等幅幅振振荡荡情情形形可可以以称为临界稳定状态。称为临界稳定状态。结结论论:线线性性系系统统的的稳稳定定性性,与与系系统统的的输输入入信信号号、初初始始状状态态均均无无关关,它是系统的固有本质属性,完全取决于系统的结构和参数。它是系统的固有本质属性,完全取决于系统的结构和参数。由于线性系统的稳定性与输入信号形式和初始状态无关,因而只需要研究系统无论是“什么”激励信号产生的暂态响应,也即系统的自由运动能否随着时间的推移而消失,因此可以假设系统的初始条件为零,外部激励为脉冲函数输入信号,即研究单位脉冲响应g(t),随着时间推移并趋向无穷大时的衰减和发散情况。这种假设相当于在扰动信号作用下,输出信号偏离原来的工作状态的情形。2线性控制系统稳定性的充分必要条件序号序号脉冲函数极限值脉冲函数极限值脉冲响应衰减情况脉冲响应衰减情况稳定状态稳定状态1衰减系统稳定2发散系统不稳定3或等幅振荡系统临界稳定 若时间 时,脉冲响应函数 趋向于零,则系统是稳定的,若发散则系统不稳定,若等于某个定值或趋于等幅振荡则系统临界稳定。线性系统稳定的充分必要条件为:系统微分方程的特征根全部都是负实数或实部为负的复数,也即,系统闭环传递函数的极点均位于s平面的左半平面。,当当特特征征根根出出现现正正实实数数或或实实部部为为正正的的复复数数或或有有极极点点分分布布于于s平平面面的的右右半半平平面面时时,线线性性系系统统为为不不稳稳定定;当当特特征征根根出出现现纯纯虚虚数数或或有有极极点点位位于于s平平面面的的虚虚轴轴时时,线线性性系系统统为为临临界稳定。界稳定。不稳定区域稳定区域临界稳定S平面解:闭环统的传递函数为 ,其闭环极点为 、,所以系统稳定。例3 单位负反馈控制系统的开环传递函数为:,试判别闭环系统的稳定性。例1系统的闭环传递函数为:,判别系统稳定性。解:由给定闭环传递函数可知系统的闭环极点分别为 、,所以系统稳定。例2已知线性系统的闭环特征方程为 ,试判别系统的稳定性。解:由给定的闭环特征方程,可求得特征根为:,依据线性系统稳定的充分必要条件可知系统为临界稳定。3代数稳定判据 设线性系统的特征方程为:,依照以下的方法构造劳斯表,构造方法如下:二阶系统:,构造劳斯表:劳斯判据:线性系统稳定的充分必要条件是劳斯表第一列的所有元素符号不改变,且符号改变的次数为特征根位于s右半平面的个数。例4 讨论二阶、三阶系统稳定的充分必要条件。由劳斯表并依据劳斯判据可知,二阶系统稳定的充分必要条件为:三阶系统:,构造劳斯表:由劳斯表并依据劳斯判据可知,三阶系统稳定的充分必要条件为:且 例5 设闭环系统的特征方程为 ,试判别其稳定性。解:构造劳斯表 由劳斯表可见,其第一列元素的符号发生了2次改变,所以该系统是不稳定的,且有2个特征根位于s右半平面。在构造劳斯表的时候,可能会遇到2种特殊的情况,致使劳斯表无法正常构造,为此需要进行相应的数学处理,具体的方法如下:第一种特殊情况:劳斯表中第一列的某一行元素出现零元素。结论:当出现这种情况时,说明系统特征方程式具有正实数根或纯虚根,表明系统不稳定或临界稳定。处理方法:可以用一个小正数 来代替那个零元素,然后继续构造下去,并令 ,判别第一列元素符号改变的次数。例6 设系统的特征方程为解:构造劳斯表如下,并作特殊处理。由劳斯表可见,其第一列元素的符号没有改变,故系统临界稳定,存在一对虚根。第二种特殊情况:劳斯表中出现某一行元素全为零。结论:出现这种特殊情况,说明存在着等值反号的实数根或成对出现的纯虚根或对称于s平面坐标轴原点的偶数对共轭复数根。特征方程存在着大小相等而径向相反的根。可见系统是不稳定的或临界稳定。处理方法:利用全零行上一行的元素及相应的阶次构造辅助多项式 ,并以 各系数代替全零行元素,然后继续构造劳斯表的其余部分。例7 设系统的特征方程为解:构造劳斯表如下,并作特殊处理。由于劳斯表第一列元素的符号发生改变,所以系统必然不稳定。4代数判据的应用 利用劳斯判据可以分析系统中某个参数对系统稳定性的影响。解:闭环特征方程为 由三阶系统稳定的充分必要条件可以得到,当 时该闭环系统是稳定的。例9单位反馈系统的开环传递函数为 ,且 ,试确定闭环系统稳定时放大倍数K的取值范围。解:系统的闭环传递函数为 系统的闭环特征方程为:三阶系统稳定的条件为:例8设单位反馈控制系统的开环传递函数为 ,试分析闭环系统稳定时放大倍数K的取值范围。例10单位反馈控制系统的开环传递函数为 ,若要求闭环特征根均位于S平面 垂线的左侧,试分析闭环系统稳定时K的取值范围。解:闭环特征方程为 作线性变换,令 ,并代入上述闭环特征方程,整理得到 根据劳斯判据,可以得到满足条件时K的取值范围 。显然,由于相对稳定性的提高,使K的取值范围变小了。稳定区域示意图:稳定区域示意图:不稳定区域稳定区域临界稳定S平面展开阅读全文
咨信网温馨提示:1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。




稳定性和代数稳定判据.pptx



实名认证













自信AI助手
















微信客服
客服QQ
发送邮件
意见反馈



链接地址:https://www.zixin.com.cn/doc/4282643.html