2024全球量子产业发展现状及展望报告.pdf
《2024全球量子产业发展现状及展望报告.pdf》由会员分享,可在线阅读,更多相关《2024全球量子产业发展现状及展望报告.pdf(105页珍藏版)》请在咨信网上搜索。
1、2024/08量子信息年度系列报告2024全球量子产业发展现状及展望在2023年里,我们见证了全球量子领域取得的多方面的进展和突破,这些成就正在引领人类进入一个前所未有的量子时代。在量子计算方面,中美仍为全球第一梯队,占据了全球过半的产业份额。同时,欧洲与亚太地区(除中国)正不断加大对量子计算的投入、制定相关政策,以缩小与中美之间的差距。另一方面,多元发展成为产业竞争的关键动力,尤其是中性原子量子计算的迅猛发展令其成为通用量子计算机的强有力候选者。量子云平台的日益成熟,逐步降低量子计算的使用门槛和成本,令更多行业能够充分利用量子计算的能力,推动其应用范围和影响力的不断扩大。在量子通信与安全方面
2、,中国与欧美分别引领量子密钥分发与后量子加密。随着两者以及量子随机数生成器的发展,通信制造业与电信运营商、银行、券商等领域将纷纷入局,通信与安全行业势必迎来翻天覆地的变化。在量子精密测量方面,中国仍与欧美存在一定差距,但部分指标已达到国际一流水准。预计未来十年,中国部分种类的量子传感器将赶超欧美,获得更大的产业份额。瑞士、德国等欧洲国家在量子精密测量领域与美国同处第一梯队,未来也仍将保持这一优势。然而,我们也不得不面对2023年量子行业融资活动相对降温的现实。宏观经济情况不佳,融资交易减少,国际竞争在量子领域日趋激烈,等等。但好在寒冬已过,2024年上半年的表现令人欣慰。这份报告主要从国家和地
3、区的视角出发,重点关注2023年各国家地区在投融资、政策、进展的表现,并对各国家的量子产业规模及其在全球中的占比进行预测,方便读者更加直观地看出各国家地区发展近况及趋势。最后,站在这个充满挑战和机遇的时刻,我们对2024年量子产业发展充满信心和期待。让我们携手共进,共同见证量子产业的蓬勃发展。光子盒研究院 院长 序言引领量子时代,共铸产业未来1声明01本报告体现的内容和阐明的观点力求独立、客观,本报告中的信息或所表述的观点均不构成投资建议,请谨慎参考。02本报告旨在梳理和呈现2023年度内全球范围内量子细分技术和产业领域发生的重要事件,涉及数据及信息以公开资料为主,以及对公开数据的整理。并且,
4、结合发布之时的全球经济发展状态,对短期未来可能产生的影响进行预判描述。03本报告重点关注2023年1月1日至2023年12月31日间量子细分行业发生的相关内容,以当地时间报道为准,以事件初次发布之时为准。对同一内容或高度相似内容的再次报道,若跨年度,不视为2023年发生的重要事件。04本报告版权归光子盒所有,其他任何形式的使用或传播,包括但不限于刊物、网站、公众号或个人使用本报告内容的,须注明来源(2024全球量子产业发展展望 R.光子盒.2024.08)。本报告最终解释权归光子盒所有。05任何个人和机构,使用本报告内容时,不得对本报告进行任何有悖原意的引用、删减和篡改。未经书面许可,任何机构
5、和个人不得以任何形式翻版、复制、发表、印刷等。如征得同意进行引用、转载、刊发的,需在允许范围内。违规使用本报告者,承担相应的法律责任。06本报告引用数据、事件及观点的目的在于收集和归纳信息,并不代表赞同其全部观点,不对其真实性负责。07本报告涉及动态数据,呈现截至统计之时的情况,不代表未来情况,不够成投资建议,请谨慎参考。2引言声明第一章 2023量子产业发展概览一、量子计算发展情况综述01 量子计算芯片与软件算法蓬勃发展02 高性能计算与量子计算的融合已成为现实03 各大电信运营商竞相布局量子计算04 研究活跃科研成果频出05 硬件发展路线图不断更新06 产业链相关企业逐年增多07 生态建设
6、日趋完善08 产业发展即将进入快速成长周期二、量子通信发展情况综述01 量子通信与安全生态蓬勃发展02 产业链相对成熟03 量子通信与安全产业链上游04 量子通信与安全产业链中游05 量子通信与安全产业链下游06 网络建设(陆地部分):QKD网络建设07 网络建设(太空部分):卫星通信建设三、量子精密测量发展情况综述01 产业已进入多元化发展周期02 产业链相关企业逐年增多03 产品丰富且市场初具规模04 下游应用市场前景广阔目录3第二章 各地区政策及进展一、美国二、中国三、欧洲四、英国五、德国六、法国七、加拿大八、澳大利亚九、日本十、韩国第三章 投融资一、融资金额大幅下降二、融资主体地理分布
7、分散三、融资轮次普遍较少第四章 量子产业规模一、总体产业规模二、各领域产业规模01 全球量子计算产业规模02 全球量子通信产业规模03 全球量子精密测量产业规模三、各地区产业规模01 各地区量子计算产业规模02 各地区量子通信产业规模03 各地区量子精密测量产业规模目录4第五章 产业展望一、量子生态位日趋明确01 中美各有所长稳坐量子第一梯队02 欧洲寻求量子产业链上游自主可控03 亚太多国积极融入欧美量子生态圈二、量子技术不断突破01 机群技术与云平台联手推动量子计算02 PQC与QKD的未来发展呈现并驾齐驱之势03 量子精密测量六大方向各有明确突破目标目录52023量子产业发展概览第一章第
8、一章2023量子产业发展概览第一章2023量子产业发展情况综述目录7一、量子计算发展情况综述一、量子计算发展情况综述01 量子计算芯片与软件算法蓬勃发展02 高性能计算与量子计算的融合已成为现实03 各大电信运营商竞相布局量子计算04 研究活跃科研成果频出05 硬件发展路线图不断更新06 产业链相关企业逐年增多07 生态建设日趋完善08 产业发展即将进入快速成长周期二、量子通信与安全发展情况综述二、量子通信与安全发展情况综述01 量子通信与安全生态蓬勃发展02 产业链相对成熟03 量子通信与安全产业链上游04 量子通信与安全产业链中游05 量子通信与安全产业链下游06 网络建设(陆地部分):Q
9、KD网络建设07 网络建设(太空部分):卫星通信建设三、量子精密测量发展情况综述三、量子精密测量发展情况综述01 产业已进入多元化发展周期02 产业链相关企业逐年增多03 产品丰富且市场初具规模04 下游应用市场前景广阔本部分根据技术创新、实际效益以及科研引领等评价标准,选取了2023年量子计算领域的十项最重要进展,包括首次成功应用、有效实验验证、新颖架构设计、参数最值、实际效用提升、采用方案者数量及影响力,以及是否有重大科研突破和广泛报道。总体进展按照量子计算芯片以及软件算法云平台两个大方向展示。第一章2023量子产业发展概览量子计算芯片与软件算法蓬勃发展01图表 2023年全球量子计算十项
10、重要进展 量子云平台 混合计算与大模型 容错算法英伟达发布了DGX Quantum系统,结合了CUDA Quantum和H100 NVL等技术,为GPT等生成式AI大模型提供了量子经典混合计算的加速平台。Quantinuum使用逻辑量子比特在其H1量子计算机上实现了容错算法,通过“随机量子相位估计”计算了氢分子的基态能量。Q-CTRL的错误抑制技术(名为Q-CTRL Embedded)已被集成到IBM云量子服务中,现在用户只需轻按开关,就能降低错误率。量子纠错 传输与存储 量子芯片架构 量子比特数量与量子体积 相干时间Quantinuum的H-Series量子计算机连续创下了三个量子体积(QV
11、)的新纪录:217、218和219,为目前报道最高的量子体积记录。IBM发布了首款超过1000量子比特的量子计算处理器Condor,其拥有1,121量子比特,基于其上一代旗舰产品Eagle芯片架构。马里兰大学在蓝宝石芯片上成功创建了磁通量量子比特,其相干时间为1.48毫秒,是目前最高纪录,并且保真度达到了99.991%。IBM推出模块化量子计算机,结合可扩展低温基础设施和经典服务器,实现了计算的超级计算架构。基于此架构,IBM发布了133量子比特可扩展芯片Heron。苏萨塞克斯大学与Universal Quantum合作,实现了微芯片模块之间的快速和可靠的传输,成功率高达99.999993%,
12、连接速度为每秒2424次,是目前最高纪录。深圳量子研究院、清华大学、福州大学以及南方科技大学4家研究团队利用具有定制频率梳的脉冲来操控辅助量子比特,提高了量子纠错的效率,超过了纠错盈亏平衡点约16%。QuEra实现了48个逻辑量子比特,能够检测和纠正纠缠逻辑门操作过程中出现的任意错误。软件、算法、云平台量子计算芯片8一、量子计算发展情况综述|2024年2月版第一章2023量子产业发展概览高性能计算与量子计算的融合已成为现实022023年,全球发生了诸多量子计算与超算融合的事件,量超融合已经从理论转向初步实践,还呈现出深化发展之势。量超融合主要依托云平台向外提供算力,成为超算中心的一种新型计算形
13、式的补充,提供多样、灵活、高效的计算资源,为不同行业领域提供更强大的算力,可供更广泛地探索量子计算的潜在价值。目前量子计算与超算融合仍然面临着硬件稳定性和算法优化等挑战,量超融合的实现,接下来需要在多个维度进行尝试与探索,包括兼容性与集成(接口设计、系统集成)、软件与算法(量子编程语言与工具、算法适配与优化)、资源管理与调度等。随着技术演进和国际合作的深化,量子计算融入超算体系将是必然的一步。图表 2023量超融合进展事件本源量子与上海超级计算中心合作成立长三角量超协同创新中心;9月,发布“量超融合”平台实现了经典与量子任务统一调度和经典+量子算法的混合编程,并对公众开放理化学研究所计划在 2
14、025 年左右通过与富岳超级计算机的集成欧盟高性能计算联合计划(EuroHPC JU)下的高性能计算和量子模拟(HPCQS)项目,其用户已经能够通过各成员国的节点,验证他们的HPC-QC融合应用德国启动Euro-Q-Exa量子计算机招标,系统该系统将由莱布尼茨超级计算中心(LRZ)托管和运营,并 集 成 到 超 级 计 算 机SuperMUC-NG中在法国混合量子计划(HQI)在,法国国家大型计算中心(GENCI)购入Pasqal的100比特量子计算机英伟达与德国于利希超算中心(JSC)、ParTec建立实验室开发经典-量子混合超级计算机澳大利亚Pawsey超级计算研究中心与加拿大Xanadu
15、公司签署谅解备忘录,将为研究人员提供最先进的混合计算中国电信发布“天衍”量子计算云平台,基于超量混合云架构,实现了“天翼云”超算能力和176量子比特超导量子计算能力的融合魁北克数字和量子创新平台PINQ落成IBM Q System One,在舍布鲁克设立的高性能计算中心将使PINQ能够提供混合计算方法9|2024年2月版全球超算中心与量子计算机的融合正在加速推进。各种类型和规模的超算中心,无论是大型的国家级研究机构还是小型的企业级实验室,都在积极探索与量子计算机的集成。这种集成不仅提升了计算能力和效率,还拓宽了应用领域。例如,生物信息学、物理模拟、金融工程等领域的复杂问题,通过超算和量子计算的
16、结合,可以得到更精确、更高效的解决方案。此外,这种融合还推动了新的算法和应用的发展,如量子机器学习、量子优化等,显示出超算和量子计算相结合的巨大潜力。HPC+QC线下机群模式是未来高性能计算的重要发展方向。这种模式通过整合传统超级计算机和量子计算资源,使得高性能计算更加灵活、高效。在这种模式下,可以实现更复杂、高精度的运算和模拟,从而推动科学研究、工程技术和产业创新的发展。这种模式的优势在于,它可以充分利用传统超级计算机在处理经典问题上的强大能力,同时利用量子计算机在处理量子问题上的独特优势。未来,超级计算机和量子计算机能够无缝集成,实现互补优势,为解决复杂问题提供强大的计算支持。随着技术的进
17、步和应用的拓展,我们可以预见,HPC+QC线下机群模式将在未来的计算领域发挥越来越重要的作用。第一章2023量子产业发展概览图表 全球现有量子计算机与经典计算机相融合的计算中心及相关实验室中国安徽省量子计算工程研究中心将计算任务在量子计算机和超级计算机之间进行分解、调度和分配中国国家超级计算郑州中心与中国上海超级计算中心和本源量子以及中移(苏州)软件共同打造量超融合先进计算平台,提供量超云融合服务法国原子能委员会与国家超大型计算中心应用Atos量子学习机(QLM)将量子计算能力整合到超级计算机Joliot Curie当中德国于利希超级计算中心基于模块化超级计算架构概念的最紧密集成德国莱布尼茨超
18、级计算中心与Atos和HQS合作研究HPC与QC之间的整合芬兰IT科学中心VTT的5量子比特超导量子计算机HELMI(“Pearl”)与欧洲超级计算机LUMI(“Snow”)连接;使用了英伟达CUDA Quantum平台西班牙加利西亚超级计算中心在“PRIMEHPC FX700”超级计算机上构建基于富士通34量子比特量子计算模拟器的集群系统美国国家超级计算应用中心集成英伟达CUDA Quantum美国橡树岭国家实验室应用Atos量子学习机(QLM);参与CUDA Quantum测试计划美国阿贡国家实验室 应用Atos量子学习机(QLM)巴西SENAI-CIMATEC应用Atos量子学习机(QL
19、M)将量子计算能力整合到超级计算机当中印度高级计算发展中心与Atos达成合作协议,共享量子学习机(QLM)成果澳大利亚帕西超级计算中心将量子加速器与HPE Cray Ex超级计算机Setonix配对,展示和测试量子和经典计算的混合模型日本国家高级产业科学技术研究院英伟达的合作伙伴,将CUDA Quantum集成到其超算平台日本理化学研究所富士通公司的量子计算机与“富岳”超级计算机集成10|2024年2月版2023年,全球主要电信运营商积极加大对量子计算领域的投资和研究力度。它们在超导、离子阱等多种量子计算机类型上进行了深入研究,反映出电信运营商对于量子技术在提升网络性能、加强安全通信等方面的潜
20、在价值的认可。此外,这些电信运营商在量子计算领域的布局不仅仅停留在研究层面,更在积极寻求技术合作和商业合作。例如,与IBM、IonQ等企业和科研机构建立战略合作伙伴关系,共同推动量子计算技术在实际应用中的验证和商业化进程。全球电信运营商在量子计算领域的布局表现出一种跨界合作、开放共享的趋势,力图在未来科技竞争中保持领先地位。目前,全球电信运营商正在构建量子计算生态系统,通过开放云平台、吸引爱好者参与等方式,推动量子领域从业人员和爱好者的积极参与。这种开放性和生态系统建设有助于推动整个量子计算领域的进一步发展,同时也预示着量子计算技术有望在电信领域发挥越来越重要的角色,为网络性能、通信安全等方面
21、带来全新的突破。注:*表示2023年的进展第一章2023量子产业发展概览各大电信运营商竞相布局量子计算领域03图表 全球主要电信运营商在量子计算机领域的布局国家公司基本情况中国发布具备“量子优越性”能力的超量融合量子计算云平台“天衍”*携手中国电科发布目前中国最大规模的量子计算云平台。发布“五岳”量子计算云平台*日本联合日本理化学研究所、富士通等研究合作伙伴,成功开发出日本第一台超导量子计算机*加入由东京大学运营的量子创新倡议联盟,并使用IBM 量子计算机验证电信用例*韩国与与韩国科学技术院(KAIST)和 Qunova 计算公司合作,使用D-Wave量子计算机优化6G低轨卫星网络*澳大利亚目
22、前已对量子计算领域进行投资(SQC),但未独立开展研究*德国DT全资子公司推出其量子即服务产品,提供量子计算专业知识和对IBM量子计算资源的访问*英国探索量子计算机如何为电路交换、数据包路由、信号处理和天线波束控制等应用带来好处*与IBM联手探索量子计算技术和量子安全密码学,帮助验证和推进电信领域潜在的量子用例意大利利用量子计算来优化无线电单元的规划,在D-Wave量子计算机上执行二次无约束二进制优化算法11|2024年2月版49.7%North America25.0%Europe21.7%Asia Pacific 3.7%Others注:图中所引量子计算领域发文数据来自Nature、Sci
23、ence、Physical Review Letter等顶级期刊,详见附件注:此处仅呈现发文数量前十的期刊情况,详见附件第一章2023量子产业发展概览研究活跃科研成果频出04图表 2023年量子计算相关顶级期刊发文情况图表 2023年量子计算相关顶级期刊发文的通讯作者所在国家China8.3%Japan5.0%Australia2.3%France0.7%Russia1.0%UK5.7%Canada1.0%Germany5.3%Switzerland3.7%Netherlands3.3%Korea2.3%Singapore1.0%Austria1.7%Denmark1.0%Spain1.3%I
24、srael0.3%Finland0.3%USA48.0%128.6 42.8 15.4 20.0 41.8 2.7 3.1 14.9 37.6 051015202530354045Physical Review LettersNatureNature CommunicationsNature PhysicsScienceOptics&PhotonicsQuantum PhysicsScience AdvancesNature Photonics量子计算相关文章发布数量影响因子|2024年2月版|2024年2月版图表展示了2023年上半年主要期刊上与量子计算相关的文章发布数量和其对应的影响因子(
25、数据来自2023年最新的SCI影响因子)。通过分析比对这些数据,可以对这些期刊在量子计算领域的学术贡献和影响力进行评估,为科研人员选择适合发表研究成果的期刊提供参考。量子计算领域的文章发布数量和影响因子之间存在一定的关系,但并非绝对。有些期刊发布数量较多,同时影响因子也较高,这表明该期刊在该领域具有较高的学术贡献和广泛的影响力。例如,Nature和Science这类综合性期刊发布数量和影响因子都较高,这主要归因于它们的学术声誉、严格的同行评审流程以及跨学科的研究覆盖范围。有些期刊发布数量较少,但影响因子仍然较高。例如,PRX Quantum是一个专注于量子物理学的高质量期刊,其发布数量虽然较少
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2024 全球 量子 产业 发展 现状 展望 报告
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【宇***】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【宇***】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。