分享
分销 收藏 举报 申诉 / 23
播放页_导航下方通栏广告

类型2023年福建省第三届大学生程序设计竞赛题目.doc

  • 上传人:w****g
  • 文档编号:4267709
  • 上传时间:2024-09-02
  • 格式:DOC
  • 页数:23
  • 大小:114.54KB
  • 下载积分:10 金币
  • 播放页_非在线预览资源立即下载上方广告
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    2023 福建省 第三 大学生 程序设计 竞赛 题目
    资源描述:
    Problem A Solve equation Accept: 111    Submit: 229 Time Limit: 1000 mSec    Memory Limit : 32768 KB Problem Description You are given two positive integers A and B in Base C. For the equation: A=k*B+d We know there always existing many non-negative pairs (k, d) that satisfy the equation above. Now in this problem, we want to maximize k. For example, A="123" and B="100", C=10. So both A and B are in Base 10. Then we have: (1) A=0*B+123 (2) A=1*B+23 As we want to maximize k, we finally get one solution: (1, 23) The range of C is between 2 and 16, and we use 'a', 'b', 'c', 'd', 'e', 'f' to represent 10, 11, 12, 13, 14, 15, respectively. Input The first line of the input contains an integer T (T≤10), indicating the number of test cases. Then T cases, for any case, only 3 positive integers A, B and C (2≤C≤16) in a single line. You can assume that in Base 10, both A and B is less than 2^31. Output For each test case, output the solution “(k,d)” to the equation in Base 10. Sample Input 3 2bc 33f 16 123 100 10 1 1 2 Sample Output (0,700) (1,23) (1,0) Problem B Bin & Jing in wonderland Accept: 4    Submit: 28 Time Limit: 1000 mSec    Memory Limit : 32768 KB Problem Description Bin has a dream that he and Jing are both in a wonderland full of beautiful gifts. Bin wants to choose some gifts for Jing to get in her good graces. There are N different gifts in the wonderland, with ID from 1 to N, and all kinds of these gifts have infinite duplicates. Each time, Bin shouts loudly, “I love Jing”, and then the wonderland random drop a gift in front of Bin. The dropping probability for gift i (1≤i≤N) is P(i). Of cause, P(1)+P(2)+…+P(N)=1. Bin finds that the gifts with the higher ID are better. Bin shouts k times and selects r best gifts finally. That is, firstly Bin gets k gifts, then sorts all these gifts according to their ID, and picks up the largest r gifts at last. Now, if given the final list of the r largest gifts, can you help Bin find out the probability of the list? Input The first line of the input contains an integer T (T≤2,000), indicating number of test cases. For each test cast, the first line contains 3 integers N, k and r (1≤N≤20, 1≤k≤52, 1≤r≤min(k,25)) as the description above. In the second line, there are N positive float numbers indicates the probability of each gift. There are at most 3 digits after the decimal point. The third line has r integers ranging from 1 to N indicates the finally list of the r best gifts’ ID. Output For each case, output a float number with 6 digits after the decimal points, which indicates the probability of the final list. Sample Input 4 2 3 3 0.3 0.7 1 1 1 2 3 3 0.3 0.7 1 1 2 2 3 3 0.3 0.7 1 2 2 2 3 3 0.3 0.7 2 2 2 Sample Output 0.027000 0.189000 0.441000 0.343000 Problem C Floor problem Accept: 133    Submit: 150 Time Limit: 1000 mSec    Memory Limit : 32768 KB Problem Description In this problem, we have f(n,x)=Floor[n/x]. Here Floor[x] is the biggest integer such that no larger than x. For example, Floor[1.1]=Floor[1.9]=1, Floor[2.0]=2. You are given 3 positive integers n, L and R. Print the result of f(n,L)+f(n,L+1)+...+f(n,R), please. Input The first line of the input contains an integer T (T≤100), indicating the number of test cases. Then T cases, for any case, only 3 integers n, L and R (1≤n, L, R≤10,000, L≤R). Output For each test case, print the result of f(n,L)+f(n,L+1)+...+f(n,R) in a single line. Sample Input 3 1 2 3 100 2 100 100 3 100 Sample Output 0 382 332 Problem D Digits Count Accept: 11    Submit: 64 Time Limit: 10000 mSec    Memory Limit : 262144 KB Problem Description Given N integers A={A[0],A[1],...,A[N-1]}. Here we have some operations: Operation 1: AND opn L R Here opn, L and R are integers. For L≤i≤R, we do A[i]=A[i] AND opn (here "AND" is bitwise operation). Operation 2: OR opn L R Here opn, L and R are integers. For L≤i≤R, we do A[i]=A[i] OR opn (here "OR" is bitwise operation). Operation 3: XOR opn L R Here opn, L and R are integers. For L≤i≤R, we do A[i]=A[i] XOR opn (here "XOR" is bitwise operation). Operation 4: SUM L R We want to know the result of A[L]+A[L+1]+...+A[R]. Now can you solve this easy problem? Input The first line of the input contains an integer T, indicating the number of test cases. (T≤100) Then T cases, for any case, the first line has two integers n and m (1≤n≤1,000,000, 1≤m≤100,000), indicating the number of elements in A and the number of operations. Then one line follows n integers A[0], A[1], ..., A[n-1] (0≤A[i]<16,0≤i<n). Then m lines, each line must be one of the 4 operations above. (0≤opn≤15) Output For each test case and for each "SUM" operation, please output the result with a single line. Sample Input 1 4 4 1 2 4 7 SUM 0 2 XOR 5 0 0 OR 6 0 3 SUM 0 2 Sample Output 7 18 Hint A = [1 2 4 7] SUM 0 2, result=1+2+4=7; XOR 5 0 0, A=[4 2 4 7]; OR 6 0 3, A=[6 6 6 7]; SUM 0 2, result=6+6+6=18. Problem E How many tuples Accept: 0    Submit: 0 Time Limit: 10000 mSec    Memory Limit : 65536 KB Problem Description Given m positive integer a[1],a[2]…a[m]. We run the following program (in C++): const int MAXN = 20; int a[MAXN], m; int gcd(int a, int b) {return b ? gcd(b, a % b) : a;} long long cnt = 0; void gao(int cur, int g) { if (cur > m) { if (g == 1)++cnt; return; } for (int i = 1; i <= a[cur]; ++i) gao(cur + 1, g < 0 ? i : gcd(g, i)); } int main() { scanf("%d", &m); for (int i = 1; i <= m; ++i) scanf("%d", a + i); gao(1, -1); cout << cnt << endl; return 0; } Here gcd is the Greatest Common Divisor, Obviously, the program above is to find the number of tuples (b[1], b[2], …, b[m]) such that: (1) gcd(b[1], b[2], …, b[m])=1. (Here we define gcd(num)=num, that is: gcd(9)=9, gcd(2)=2) (2) 1≤b[i]≤a[i]. (1≤i≤m, b[i] is an integer) Now in this problem, the m and a[i] may be very large! So could you write one efficient program to find the answer? The answer may be too large. So you can just output the answer Mod 1,000,000,007. Input The first line of the input contains an integer T (T≤10,000), indicating the number of test cases. Then T cases, for any case, only two lines. The first line is one integer m(1≤m≤20). The second line has m integers indicate a[1], a[2], …, a[m] (1≤a[i]≤100,000,000, 1≤i≤m). The answer may be too large. So you can just output the answer Mod 1,000,000,007. Output For each test case, print a line containing the answer Mod 1,000,000,007. Sample Input 3 2 5 5 2 10000 9873 2 1234 5678 Sample Output 19 60026156 4261566 Problem F Hua Rong Dao Accept: 22    Submit: 66 Time Limit: 1000 mSec    Memory Limit : 32768 KB Problem Description Cao Cao was hunted down by thousands of enemy soldiers when he escaped from Hua Rong Dao. Assuming Hua Rong Dao is a narrow aisle (one N*4 rectangle), while Cao Cao can be regarded as one 2*2 grid. Cross general can be regarded as one 1*2 grid.Vertical general can be regarded as one 2*1 grid. Soldiers can be regarded as one 1*1 grid. Now Hua Rong Dao is full of people, no grid is empty. There is only one Cao Cao. The number of Cross general, vertical general, and soldier is not fixed. How many ways can all the people stand? Input There is a single integer T (T≤4) in the first line of the test data indicating that there are T test cases. Then for each case, only one integer N (1≤N≤4) in a single line indicates the length of Hua Rong Dao. Output For each test case, print the number of ways all the people can stand in a single line. Sample Input 2 1 2 Sample Output 0 18 Hint Here are 2 possible ways for the Hua Rong Dao 2*4. Problem H Mountain Number Accept: 2    Submit: 7 Time Limit: 1000 mSec    Memory Limit : 32768 KB Problem Description One integer number x is called "Mountain Number" if: (1) x>0 and x is an integer; (2) Assume x=a[0]a[1]...a[len-2]a[len-1](0≤a[i]≤9, a[0] is positive). Any a[2i+1] is larger or equal to a[2i] and a[2i+2](if exists). For example, 111, 132, 893, 7 are "Mountain Number" while 123, 10, 76889 are not "Mountain Number". Now you are given L and R, how many "Mountain Number" can be found between L and R (inclusive) ? Input The first line of the input contains an integer T (T≤100), indicating the number of test cases. Then T cases, for any case, only two integers L and R (1≤L≤R≤1,000,000,000). Output For each test case, output the number of "Mountain Number" between L and R in a single line. Sample Input 3 1 10 1 100 1 1000 Sample Output 9 54 384 Problem I Star Accept: 78    Submit: 320 Time Limit: 1000 mSec    Memory Limit : 32768 KB Problem Description Overpower often go to the playground with classmates. They play and chat on the playground. One day, there are a lot of stars in the sky. Suddenly, one of Overpower’s classmates ask him: “How many acute triangles whose inner angles are less than 90 degrees (regarding stars as points) can be found? Assuming all the stars are in the same plane”. Please help him to solve this problem. Input The first line of the input contains an integer T (T≤10), indicating the number of test cases. For each test case: The first line contains one integer n (1≤n≤100), the number of stars. The next n lines each contains two integers x and y (0≤|x|, |y|≤1,000,000) indicate the points, all the points are distinct. Output For each test case, output an integer indicating the total number of different acute triangles. Sample Input 1 3 0 0 10 0 5 1000 Sample Output 1 Problem J Min Number Accept: 85    Submit: 261 Time Limit: 1000 mSec    Memory Limit : 32768 KB Problem Description Now you are given one non-negative integer n in 10-base notation, it will only contain digits ('0'-'9'). You are allowed to choose 2 integers i and j, such that: i!=j, 1≤i<j≤|n|, here |n| means the length of n’s 10-base notation. Then we can swap n[i] and n[j]. For example, n=9012, we choose i=1, j=3, then we swap n[1] and n[3], then we get 1092, which is smaller than the original n. Now you are allowed to operate at most M times, so what is the smallest number you can get after the operation(s)? Please note that in this problem, leading zero is not allowed! Input The first line of the input contains an integer T (T≤100), indicating the number of test cases. Then T cases, for any case, only 2 integers n and M (0≤n<10^1000, 0≤M≤100) in a single line. Output For each test case, output the minimum number we can get after no more than M operations. Sample Input 3 9012 0 9012 1 9012 2 Sample Output 9012 1092 1029 Problem K Tickets Accept: 14    Submit: 50 Time Limit: 3000 mSec    Memory Limit : 32768 KB Problem Description You have won a collection of tickets on luxury cruisers. Each ticket can be used only once, but can be used in either direction between the 2 different cities printed on the ticket. Your prize gives you free airfare to any city to start your cruising, and free airfare back home from wherever you finish your cruising. You love to sail and don't want to waste any of your free tickets. How many additional tickets would you have to buy so that your cruise can use all of your tickets? Now giving the free tickets you have won. Please compute the smallest number of additional tickets that can be purchased to allow you to use all of your free tickets. Input There is one integer T (T≤100) in the first line of the input. Then T cases, for any case, the first line contains 2 integers n, m (1≤n, m≤100,000). n indicates the identifier of the cities are between 1 and n, inclusive. m indicates the tickets you have won. Then following m lines, each line contains two integers u and v (1≤u, v≤n), indicates the 2 cities printed on your tickets, respectively. Output For each test case, output an integer in a single line, indicates the smallest number of additional tickets you need to buy. Sample Input 3 5 3 1 3 1 2 4 5 6 5 1 3 1 2 1 6 1 5 1 4 3 2 1 2 1 2 Sample Output 1 2 0
    展开阅读全文
    提示  咨信网温馨提示:
    1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
    2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
    3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
    4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
    5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
    6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

    开通VIP折扣优惠下载文档

    自信AI创作助手
    关于本文
    本文标题:2023年福建省第三届大学生程序设计竞赛题目.doc
    链接地址:https://www.zixin.com.cn/doc/4267709.html
    页脚通栏广告

    Copyright ©2010-2025   All Rights Reserved  宁波自信网络信息技术有限公司 版权所有   |  客服电话:0574-28810668    微信客服:咨信网客服    投诉电话:18658249818   

    违法和不良信息举报邮箱:help@zixin.com.cn    文档合作和网站合作邮箱:fuwu@zixin.com.cn    意见反馈和侵权处理邮箱:1219186828@qq.com   | 证照中心

    12321jubao.png12321网络举报中心 电话:010-12321  jubao.png中国互联网举报中心 电话:12377   gongan.png浙公网安备33021202000488号  icp.png浙ICP备2021020529号-1 浙B2-20240490   


    关注我们 :微信公众号  抖音  微博  LOFTER               

    自信网络  |  ZixinNetwork