高一数学单调性与最大小值.pptx
《高一数学单调性与最大小值.pptx》由会员分享,可在线阅读,更多相关《高一数学单调性与最大小值.pptx(16页珍藏版)》请在咨信网上搜索。
1.3.1单调性与最大(小)值(1)-函数的单调性 一一.引入课题引入课题观察下列各个函数的图象,并说说它们观察下列各个函数的图象,并说说它们分别反映了相应函数的哪些变化规律:分别反映了相应函数的哪些变化规律:yx1-11-1yx1-11-1yx1-11-1yx1-11-1yx1-11-1yx1-11-1问:随问:随x的增大,的增大,y的值有什么变化?的值有什么变化?画出下列函数的图象,观察其变化规律:画出下列函数的图象,观察其变化规律:1f(x)=x 从左至右图象上升还是下从左至右图象上升还是下_?在区间在区间 _ 上,随着上,随着x的增大,的增大,f(x)的值随着的值随着 _ 2f(x)=-2x+1 从左至右图象上升还是下降从左至右图象上升还是下降 _?在区间在区间 _ 上,随着上,随着x的增的增大,大,f(x)的值随着的值随着 _ 3f(x)=x在区间在区间 _ 上,上,f(x)的值随的值随着着x的增大而的增大而 _ 在区间在区间 _ 上,上,f(x)的值随的值随着着x的增大而的增大而 _ 2二二.新课教学新课教学(一)函数单调性定义(一)函数单调性定义思考:仿照增函数的定义说出减函数的定义思考:仿照增函数的定义说出减函数的定义 1增函数增函数 一般地,设函数一般地,设函数y=f(x)的定义域为的定义域为I,如果对于定,如果对于定义域义域I内的某个区间内的某个区间D内的任意两个自变量内的任意两个自变量x ,x ,当当x x 时,都有时,都有f(x )f(x ),那么就说,那么就说f(x)在区间在区间D上是上是增函数增函数(increasing function)12 21 12注意:注意:函数的单调性是在定义域内的某函数的单调性是在定义域内的某个区间上的性质,是函数的局部性个区间上的性质,是函数的局部性质;质;必须是对于区间必须是对于区间D内的任意两个内的任意两个自变量自变量x1,x2;当;当x1x2时,总有时,总有f(x1)f(),但显然此图象表,但显然此图象表示的函数不是一个单调函数;示的函数不是一个单调函数;几何特征几何特征:在自变量取值区间上,若单调函数的图:在自变量取值区间上,若单调函数的图象上升,则为增函数,图象下降则为减函数象上升,则为增函数,图象下降则为减函数.结论结论1:一次函数一次函数 的单调性,单的单调性,单调区间:调区间:结论结论2:二次函数二次函数 的单调性,单调区间:的单调性,单调区间:(二)典型例题(二)典型例题例例1如图如图6是定义在闭区间是定义在闭区间-5,5上的函上的函数数y=f(x)的图象,根据图象说出的图象,根据图象说出y=f(x)的单的单调区间,以及在每一单调区间上,函数调区间,以及在每一单调区间上,函数y=f(x)是增函数还是减函数是增函数还是减函数.注意:注意:函数的单调性是对某个区间而言的,函数的单调性是对某个区间而言的,对于单独的一点,由于它的函数值是唯一对于单独的一点,由于它的函数值是唯一确定的常数,因而没有增减变化,所以不确定的常数,因而没有增减变化,所以不存在单调性问题;对于闭区间上的连续函存在单调性问题;对于闭区间上的连续函数来说,只要在开区间上单调,它在闭区数来说,只要在开区间上单调,它在闭区间上也就单调,因此,在考虑它的单调区间上也就单调,因此,在考虑它的单调区间时,包括不包括端点都可以;间时,包括不包括端点都可以;例例2作出函数作出函数的图象并指出它的的单调区间的图象并指出它的的单调区间例例3物理学中的玻意定律物理学中的玻意定律(k为正常数为正常数)告诉我们告诉我们,对于一定量的气体对于一定量的气体,当体积当体积V减小时减小时,压强压强P将增大将增大.试用函数的试用函数的单调性证明之单调性证明之.3判断函数单调性的方法步骤判断函数单调性的方法步骤 利用定义证明函数利用定义证明函数f(x)在给定的区间在给定的区间D上上的单调性的一般步骤:的单调性的一般步骤:任取任取x1,x2D,且,且x1x2;作差作差f(x1)f(x2);变形(通常是因式分解和配方);变形(通常是因式分解和配方);定号(即判断差定号(即判断差f(x1)f(x2)的正负);的正负);下结论(即指出函数下结论(即指出函数f(x)在给定的区间在给定的区间D上的单调性)上的单调性)探究:探究:P30 画出反比例函数画出反比例函数的图象的图象这个函数的定义域是什么?这个函数的定义域是什么?它在定义域它在定义域I上的单调性怎样?证明上的单调性怎样?证明你的结论你的结论结论结论3:反比例函数反比例函数 的单调性,单调区间:的单调性,单调区间:例例4证明函数证明函数在(在(1,+)上为增函数)上为增函数 例例5讨论函数讨论函数在在(-2,2)内的单调性内的单调性.三三.归纳小结归纳小结1、函数的单调性的判定、证明和单调区间函数的单调性的判定、证明和单调区间的确定:的确定:函数的单调性一般是先根据图象函数的单调性一般是先根据图象判断,再利用定义证明画函数图象通常判断,再利用定义证明画函数图象通常借助计算机,求函数的单调区间时必须要借助计算机,求函数的单调区间时必须要注意函数的定义域,单调性的证明一般分注意函数的定义域,单调性的证明一般分五步:五步:取取 值值 作作 差差 变变 形形 定定 号号 下结论下结论2、直接利用初等函数的单调区间。、直接利用初等函数的单调区间。四四.作业布置作业布置书面作业:书面作业:课本课本P32 练习:练习:2、3 P39习题习题13(A组)组)第第1-4题题 2(选做选做)证明函数证明函数f(x)=x 在在(-,+)上是增函数上是增函数.3- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数学 调性 最大
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【w****g】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【w****g】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【w****g】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【w****g】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文