高一数学单调性与最大或最小值.pptx
《高一数学单调性与最大或最小值.pptx》由会员分享,可在线阅读,更多相关《高一数学单调性与最大或最小值.pptx(34页珍藏版)》请在咨信网上搜索。
学学校校准准备备建建造造一一个个长长方方形形的的花花坛坛,面积设计为面积设计为1616平方米。平方米。由由于于周周围围环环境境的的限限制制,其其中中一一边边的的长长度度既既不不能能超超过过1010米米,又又不不能能少少于于2 2米米。求求花花坛坛长长与与宽两边之和的最小值和最大值。宽两边之和的最小值和最大值。16平方米平方米设长方形受限制一边长为设长方形受限制一边长为 x 米,米,归结为数学问题:归结为数学问题:归结为数学问题:归结为数学问题:x16平方米平方米利用不等式可求最小值;利用不等式可求最小值;如何求最大值?如何求最大值?研究研究y随随x的的变化而变化的规律变化而变化的规律1.3.1 单调性与最大单调性与最大(小小)值值上海市年生产总值统计表上海市年生产总值统计表年份生产总值(亿元)上海市高等学校上海市高等学校在校学生数统计表在校学生数统计表年份 人数(万人)上海市日平均上海市日平均出生人数统计表出生人数统计表年份 人数(人)上海市耕地面积统计表上海市耕地面积统计表年份 面积(万公顷)OxyoOxyOxy21yOxyxoooOxyOxyOxyOxyOxyOxyOxyOxyOxy 函数f(x)在给定区间上为增函数。Oxy如何用如何用x与与 f(x)来描述上升的图象?来描述上升的图象?如何用如何用x与与 f(x)来描述下降的图象?来描述下降的图象?函数f(x)在给定区间上为减函数。Oxy单调递增区间:单调递增区间:单调递减区间:单调递减区间:xy21o引例引例的继续:的继续:如何判断函数方法一方法一方法二方法二方法三方法三证明证明引例引例的继续:的继续:如何应用函数如何应用函数课堂小结:课堂小结:(1)函数单调性的概念;)函数单调性的概念;(2)判断函数单调区间的常用方法;)判断函数单调区间的常用方法;(3)解决实际问题的数学思想方法。)解决实际问题的数学思想方法。(2)(3)作业作业(1)函数单调性的概念:函数单调性的概念:1.如果对于属于这个区间的自变量的任意如果对于属于这个区间的自变量的任意称函数称函数 f(x)在在这个区间上是增函数。这个区间上是增函数。2.如果对于属于这个区间的自变量的任意如果对于属于这个区间的自变量的任意称函数称函数 f(x)在在这个区间上是减函数。这个区间上是减函数。一般地,对于给定区间上的函数一般地,对于给定区间上的函数f(x):方法一:分析函数值大小的变化方法一:分析函数值大小的变化。方法二:分析函数的图象方法二:分析函数的图象。方法三:比较大小过程中的数值分析方法三:比较大小过程中的数值分析。判断函数单调区间的常用方法:判断函数单调区间的常用方法:方法一方法一方法二方法二方法三方法三解决实际问题的数学思想方法:解决实际问题的数学思想方法:实际问题实际问题数学问题数学问题实际问题的解实际问题的解数学问题的解数学问题的解建立数学模型建立数学模型实践验证实践验证求解求解有解吗?有解吗?作业:作业:P43 3、4、5同学们再见!同学们再见!证明:证明:方法一:分析函数值大小的变化方法一:分析函数值大小的变化。xy986543710210.8108.78.288.39.311.610单调递减区间:单调递增区间:猜测:2,44,10Oxy448812121616102614方方法法二二:分分析析和和函函数数的的图图象象猜测:猜测:单调递减区间:单调递减区间:2,4单调递增区间:单调递增区间:4,10方法三:比较大小过程中的数值分析方法三:比较大小过程中的数值分析。解:解:证明:证明:(条件)(条件)(论证结果)(论证结果)(结论)(结论)- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数学 调性 最大 最小值
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【精****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【精****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文