高一数学必修一知识点.pptx
《高一数学必修一知识点.pptx》由会员分享,可在线阅读,更多相关《高一数学必修一知识点.pptx(62页珍藏版)》请在咨信网上搜索。
集合结构图集合结构图集合集合集合含义与表示集合含义与表示集合间关系集合间关系集合基本运算集合基本运算列举法列举法 描述法描述法 图示法图示法子集子集真子集真子集补集补集并集并集交集交集(1)(1)确定性确定性确定性确定性:集合中的元素必须是确定的:集合中的元素必须是确定的:集合中的元素必须是确定的:集合中的元素必须是确定的.1.集合中元素的性质集合中元素的性质:(2)(2)互异性互异性互异性互异性:一个给定的集合中的元素是互不相同的:一个给定的集合中的元素是互不相同的:一个给定的集合中的元素是互不相同的:一个给定的集合中的元素是互不相同的.(3)(3)无序性无序性无序性无序性:集合中的元素是没有先后顺序的:集合中的元素是没有先后顺序的:集合中的元素是没有先后顺序的:集合中的元素是没有先后顺序的.自然数集(非负整数集):记作自然数集(非负整数集):记作 N 正整数集:记作正整数集:记作N*或或N+整数集:记作整数集:记作 Z有理数集:记作有理数集:记作 Q实数集:记作实数集:记作 R2.常用的数集及其记法常用的数集及其记法(含(含(含(含0 0)(不含(不含(不含(不含0 0)子集:子集:A B任意任意xA xB.真子集:真子集:A B xA,xB,但存在,但存在x0B且且x0 A.集合相等:集合相等:AB A B且且B A.空集:空集:.性质:性质:A,若,若A非空,非空,则则A.3.集合间的关系集合间的关系:子集、真子集个数:子集、真子集个数:一般地,集合一般地,集合A含有含有n个元素,个元素,A的非空真子集的非空真子集 个个.则则A的子集共有的子集共有 个个;A的真子集共有的真子集共有 个个;A的非空子集的非空子集 个个;2n2n12n-12n-24.并集并集:B A 5.交集交集:B A 6.全集全集:一一般般地地,如如果果一一个个集集合合含含有有我我们们所所研研究究问问题题中中涉及的涉及的所有所有所有所有元素元素,那么就称这个集合为那么就称这个集合为全集全集全集全集.7.补集补集:UAUAUA=x|x U,且x AUA类比并集的相关性质类比并集的相关性质211-,=M2.2.已知集合已知集合 集合集合 则则M MN N是是()()A B1 C1A B1 C1,2 D2 D,MxxyyN=2练习练习B变式:变式:例例1已知集合已知集合Ax|2x5,集合集合Bx|m1x2m1,若若 ,求,求m的取值范围的取值范围.(1)B为空集(2)B不为空集知识知识结构结构概念概念三要素三要素图象图象性质性质指数函数指数函数应用应用大小比较大小比较方程解的个数方程解的个数不等式的解不等式的解实际应用实际应用对数函数对数函数函函数数函数的概念函数的概念函数的概念函数的概念函数的三要素:定义域,值域,对应法则A.BA.B是两个非空的集合是两个非空的集合,如果按照如果按照某种对应法则某种对应法则f f,对于集合对于集合A A中的中的每一个元素每一个元素x x,在集合在集合B B中都有唯中都有唯一的元素一的元素y y和它对应,这样的对和它对应,这样的对应叫做从应叫做从A A到到B B的一个函数。的一个函数。使函数有意义的使函数有意义的x x的取值范围。的取值范围。求求求求定定定定义义义义域域域域的的的的主主主主要要要要依依依依据据据据1 1、分式的分母不为零、分式的分母不为零.2 2、偶次方根的被开方数大于等于零、偶次方根的被开方数大于等于零.3 3、零次幂的底数不为零、零次幂的底数不为零.4 4、对数函数的真数大于零、对数函数的真数大于零.5 5、指、对数函数的底数大于零且不为、指、对数函数的底数大于零且不为1.1.6、实际问题中函数的定义域、实际问题中函数的定义域例例1 1 求函数求函数 的定义域。的定义域。求定义域求函数解析式的方法求函数解析式的方法:待定系数法、换元法、配凑法待定系数法、换元法、配凑法1,已知已知 求求f(x).2,已知已知f(x)是一次函数,且是一次函数,且ff(x)=4x+3求求f(x).3,已知,已知 求求f(x).求值域的一些方法:求值域的一些方法:求值域的一些方法:求值域的一些方法:1、图像法,、图像法,2、配方法,配方法,3、观察法,、观察法,4、分离常数法,、分离常数法,5、换元法,、换元法,6单调性法单调性法。a)b)c)d)1、已知函数、已知函数f(x)=x+2,(x1)x2,(1x2)2x,(x2)若若f(x)=3,则则x的值是的值是()A.1B.1或或C.1,D.D 一个函数的三要素为:定义域、对应关系和值域,值域是由对应法则和定义域决定的判断两个函数相等的方法:1、定义域是否相等(定义域不同的函数,不是相等的函数)2、对应法则是否一致(对应关系不同,两个函数也不同)例、下列函数中哪个与函数y=x相等反比例函数反比例函数反比例函数反比例函数 1、定义域、定义域 .2、值域、值域 4、图象、图象k0k0a1时,时,f(x)=ag(x)的单调性与的单调性与g(x)相同相同;当当0a0,(-a)0,求实数求实数a a的取值范围的取值范围 一般地,设函数一般地,设函数 的定义域为的定义域为I,如果存,如果存在实数在实数M满足:满足:(1 1)对于)对于任意任意的的 ,都有都有 ;(2 2)存在存在 ,使得,使得 .那么,称那么,称M是函数是函数 的的最大值最大值.xIf(x)My=f(x)x0If(x0)=My=f(x)最值:最值:几何意义:几何意义:函数函数 的最大值是的最大值是图象最高点的纵坐标图象最高点的纵坐标.y=f(x)一般地,设函数一般地,设函数 的定义域为的定义域为I,如果存,如果存在实数在实数M满足:满足:(1 1)对于)对于任意任意的的 ,都有都有 ;(2 2)存在)存在 ,使得,使得 .那么,称那么,称M是函数是函数 的的最小值最小值.xIf(x)My=f(x)x0If(x0)=My=f(x)最值:最值:几何意义:几何意义:函数函数 的最小值是的最小值是图象最低点的纵坐标图象最低点的纵坐标.y=f(x)解:设解:设x x1 1,x x 2 2是区间是区间22,66上的任意两个实数,且上的任意两个实数,且x x1 1xx2 2,则,则f(xf(x1 1)-f(x)-f(x2 2)2 2=-x x1 1-1-12 2x x2 2-1-12(x2(x2 2-1)-(x-1)-(x1 1-1)-1)(x(x1 1-1)(x-1)(x2 2-1)-1)=(x(x1 1-1)(x-1)(x2 2-1)-1)2(x2(x2 2-x-x1 1)=例例1 1.已知函数已知函数y=y=(x2x2,66),求函数的),求函数的最大值和最小值。最大值和最小值。2 2x-1x-12x2x2 2x0,0,(x(x1 1-1)(x-1)(x2 2-1)0-1)0于是于是f(xf(x1 1)-f(x)-f(x2 2)0)0,即:,即:f(xf(x1 1)f(x)f(x2 2)所以函数所以函数y=y=在区间在区间22,66上是减函数。上是减函数。2 2x-1x-1因此函数在因此函数在 时取得最大值,最大值是时取得最大值,最大值是 在在 时取得最小值,最小值是时取得最小值,最小值是 。x=2x=22 2x=x=6 60.40.4例题:例题:基本初等函数基本初等函数基本初等函数基本初等函数指数函数指数函数对对数函数数函数幂幂函数函数 aras=ar+s(a0,r,sQ);(ar)s=ars(a0,r,sQ);(ab)r=ar br(a0,b0,rQ).指数幂的运算7181.对数的运算性质对数的运算性质:(2)(3)如果如果 a 0,a 1,M 0,N 0 有:有:对数的运算性质 指数函数与对数函数指数函数与对数函数函数函数y=ax (a0 且且 a1)y=log a x (a0 且且 a1)图图象象a 10 a 1a 10 a 1性性质质定义域定义域定义域定义域值域值域值域值域定点定点定点定点xy01xy011xyo1xyo在在R上是上是增增函数函数在在R上是上是减减函数函数在在(0,+)(0,+)上是上是增增函数函数在在(0,+)(0,+)上是上是减减函数函数(1,0)(0,1)指数函数与对数函数指数函数与对数函数B(1)(2)(3)(4)OXy总结:在第一象限,越靠近y轴,底数就越大指数函数与对数函数指数函数与对数函数若图象若图象C1,C2,C3,C4对应对应 y=logax,y=logbx,y=logcx,y=logdx,则(则()A.0ab1cd B.0ba1dc C.0dc1ba D.0cd1abxyC1C2C3C4o1D规律:在规律:在x轴轴上方图象自左上方图象自左向右底数越来向右底数越来越大!越大!三、幂函数的性质三、幂函数的性质:.所有的幂函数都通过点所有的幂函数都通过点(1,1(1,1);如果如果0,0,则幂函数则幂函数在在(0,+)(0,+)上为减函数。上为减函数。0,0,则幂函数则幂函数 在在(0,+)(0,+)上为增函数上为增函数;1012.2.当当为奇数时为奇数时,幂函数为奇函数幂函数为奇函数,当当为偶数时为偶数时,幂函数为偶函数幂函数为偶函数.解析式:(-,0)减减(-,0减减(1,1)(1,1)(1,1)(1,1)(1,1)公共点公共点(0,+)减减增增增增0,+)增增增增单调性单调性奇奇非奇非非奇非偶偶奇奇偶偶奇奇奇偶性奇偶性y|y00,+)R0,+)R值域值域x|x00,+)定义域定义域y=x-1y=x3y=x2 y=x 函数函数性质性质幂函数的性质幂函数的性质21xy=为幂函数,则为幂函数,则f(x)=方程与零点方程与零点1 1、函数的零点的概念、函数的零点的概念零点零点结论:结论:零点对于函数而言,根对于方程而言零点对于函数而言,根对于方程而言结结论论x xy y0 0a ab b.零点存在定理零点存在定理(1)(1)函数函数y=f(x)y=f(x)在区间在区间a,ba,b上的图象是连续不断的一上的图象是连续不断的一条曲线:条曲线:(2)f(a)(2)f(a)f(b)0f(b)0;(;(2)x2x60.- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数学 必修 知识点
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精***】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【精***】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精***】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【精***】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文