重积分——重积分的概念与性质.pptx
《重积分——重积分的概念与性质.pptx》由会员分享,可在线阅读,更多相关《重积分——重积分的概念与性质.pptx(40页珍藏版)》请在咨信网上搜索。
18.1 重积分的概念与性质重积分的概念与性质 28.1.1 重积分的定义重积分的定义 回顾在第五章中用定积分计算物体的质量回顾在第五章中用定积分计算物体的质量问题,假定物体的密度是连续变化的问题,假定物体的密度是连续变化的。首先考虑一根长度为首先考虑一根长度为l 的细直杆的质量。的细直杆的质量。不妨假定它在轴上占据区间不妨假定它在轴上占据区间0,l,设其线设其线密度为密度为3 如果我们所考虑的物体是一平面薄板,不如果我们所考虑的物体是一平面薄板,不妨假定它占有妨假定它占有xoy坐标面上的区域坐标面上的区域D,并设其,并设其面密度函数为面密度函数为=(x,y)常数。常数。这里这里(x,y)0 0且在且在D上连续。上连续。yxo4 如果我们考虑的物体占据三维空间如果我们考虑的物体占据三维空间o-xyz的闭区的闭区域域,其体密度函数为,其体密度函数为=(x,y,z)常数常数,则其质量则其质量可表示为可表示为5定义定义8.1.1设设f(x,y)是有界闭区域是有界闭区域D上的有界函上的有界函数,将区域数,将区域D任意分割成任意分割成 n 个小区域个小区域 如果当各小区域直径的最大值如果当各小区域直径的最大值 趋于零时,上趋于零时,上述和式的极限存在,则称此极限为函数述和式的极限存在,则称此极限为函数f(x,y)在在闭区域闭区域D上的二重积分,记作上的二重积分,记作6积积积积分分分分区区区区域域域域积积积积分分分分和和和和积积积积分分分分变变变变量量量量被被被被积积积积表表表表达达达达式式式式面面面面积积积积元元元元素素素素被被被被积积积积函函函函数数数数 由二重积分的定义可知,平面薄板的质量是由二重积分的定义可知,平面薄板的质量是面密度函数在薄板所占闭区域上的二重积分面密度函数在薄板所占闭区域上的二重积分7定义定义8.1.2 设设 是是Rn中一个可求体积(中一个可求体积(n=2时为时为面积)的有界闭区域,面积)的有界闭区域,f(X)是在是在 上有定义的有上有定义的有界函数,将界函数,将 分割为彼此没有公共内点的任意分割为彼此没有公共内点的任意闭子域闭子域8 如果当如果当 0时,上述和式的极限存在,并且时,上述和式的极限存在,并且该极限与该极限与 的分割方式及的分割方式及Xi的取法无关,我们称的取法无关,我们称该极限值为函数该极限值为函数f(X)在在 上的上的n(重重)积分,记为积分,记为 其中其中f(X)称为被积函数,称为被积函数,称为积分区域,也称为积分区域,也称函数称函数f(X)在在 上可积。上可积。特别地,当特别地,当n=2时函数时函数 f(X)=f(x,y)(x,y)D,即为函数即为函数f(x,y)在在D 上的二重积分,上的二重积分,d 称为称为面积元素面积元素。9 当当n=3时函数时函数 f(X)=f(x,y,z)(x,y,z),即为函数即为函数f(x,y,z)在在 上的三重积分,上的三重积分,dv称称为体积元素为体积元素。有了上述定义,空间立体的质量也可以通有了上述定义,空间立体的质量也可以通过密度函数的三重积分来表示,即过密度函数的三重积分来表示,即可以证明可以证明定理定理8.1.1 (1)(充分条件)若(充分条件)若f(X)在在 上连续,则它在上连续,则它在 上可积;上可积;(2)(必要条件)若必要条件)若f(X)在在 上上可积,则它在可积,则它在 上有界。上有界。108.1.2 重积分的性质重积分的性质 我们仅给出二重积分的性质,三重积分我们仅给出二重积分的性质,三重积分的性质完全类似。的性质完全类似。假设性质中涉及的函数在相应区域上均可假设性质中涉及的函数在相应区域上均可积,积,D、D1、D2都是平面上的有界闭区域。都是平面上的有界闭区域。(2)(关于被积函数的线性可加性)若关于被积函数的线性可加性)若、为常为常数,则数,则 表示表示D的面积的面积11(3)(关于积分区域的可加性)(关于积分区域的可加性)无公共内点,则无公共内点,则(4)(积分不等式)如果在(积分不等式)如果在D上有上有f(x,y)g(x,y),则则特别地,有特别地,有12(5)(估值定理)设(估值定理)设M、m分别是分别是f(x,y)在有界闭在有界闭区域区域D上的最大值和最小值,上的最大值和最小值,表示表示D的面积,的面积,则则(6)(中值定理)设函数(中值定理)设函数f(x,y)在有界闭区域在有界闭区域D上连续,上连续,表示表示D的面积,则至少存在一点的面积,则至少存在一点(,),使,使下面仅给出结论下面仅给出结论(5)、(6)的证明。的证明。1314(1)D1:x轴、轴、y轴及轴及x+y=1所围;所围;(2)D2:(x 2)2+(y 1)2 2解解(1)因为在区域因为在区域D1上上0 x+y 1,(x+y)3 (x+y)2根据性质根据性质5,得,得151 2 从图形易知在从图形易知在D上除上除切点外,处处有切点外,处处有x+y 1 (x+y)2(x+y)3所以有所以有(x2)2+(y1)2 2该圆域与直线该圆域与直线x+y=1相切。相切。16例例3 利用二重积分的性质,估计积分的值。利用二重积分的性质,估计积分的值。解解因为因为 fx=2x,fy=8y,所以有驻点,所以有驻点(0,0)。先求先求f(x,y)=x2+4y2+1在在D上上的最大值、最小值。的最大值、最小值。f(0,0)=1。17 显显然然,在在边边界界上上f(x,y)的的最最小小值为值为2,最大值,最大值5。于是于是f(x,y)在在D上的最小值为上的最小值为1,最大值为最大值为5,积分区域的面积为,积分区域的面积为。所以有所以有188.2 二重积分的计算法二重积分的计算法 利用二重积分的定义直接计算二重积分一利用二重积分的定义直接计算二重积分一般很困难,计算二重积分的基本途径是将二重般很困难,计算二重积分的基本途径是将二重积分转化为累次积分,然后通过计算两次定积积分转化为累次积分,然后通过计算两次定积分来计算二重积分分来计算二重积分。198.2.1 利用直角坐标计算二重积分利用直角坐标计算二重积分 设设f(x,y)是定义在平是定义在平面区域面区域D上的非负连续上的非负连续函数,以函数,以D为底面,以为底面,以曲面曲面f(x,y)为顶面,以为顶面,以D的边界曲线为准线而母的边界曲线为准线而母线平行于线平行于z 轴的柱面为轴的柱面为侧面所围成的立体称为侧面所围成的立体称为曲顶柱体曲顶柱体。如何求该曲顶柱体的体积呢?如何求该曲顶柱体的体积呢?1、曲顶柱体的体积曲顶柱体的体积-二二重积分的重积分的几何意义几何意义20(1)分分割割 用用一一组组曲曲线线网网将将D分分成成n个个小小闭闭区区域域 1,2,n,分分别别以以这这些些小小区区域域的的边边界界为为准准线线作作母母线线平平行行于于z轴轴的的柱柱面面,这这些些柱柱面面将将原原来来的的曲曲顶柱体分割成顶柱体分割成n个细曲顶柱体。个细曲顶柱体。21(2)近似近似 当这些小区域的直径当这些小区域的直径di很小时,由于很小时,由于f(x,y)连连续续,对对于于同同一一个个小小区区域域上上的的不不同同点点,f(x,y)的的变变化化很很小小,细细曲曲顶顶柱柱体体可可近近似似地地看看作作平平顶柱体顶柱体22由二重积分定义立即得到由二重积分定义立即得到这也是二重积分的几何意义。这也是二重积分的几何意义。23242.区域的不等式组表示区域的不等式组表示(举例举例)例例 下列不等式组各表示什么区域下列不等式组各表示什么区域25例例 下列图形怎么用不等式(组)表示下列图形怎么用不等式(组)表示263、二重积分的计算法二重积分的计算法用用几何观点几何观点讨论。讨论。应用应用 “定积分定积分”中求中求“平行截面面平行截面面积为已知的立体的体积积为已知的立体的体积”的方法计算这个曲顶柱体的的方法计算这个曲顶柱体的体积。体积。(1)设设f(x,y)0,f(x,y)在在D上连续。上连续。X型型o a b xyo a b xy27o a x0 b xyz 在区间在区间a,b上任取一点上任取一点x0,作平行于作平行于yOz面面的平面的平面x=x0。这平面截曲顶柱体所得截面是一个以区间这平面截曲顶柱体所得截面是一个以区间 1(x0),2(x0)为底、曲线为底、曲线z=f(x0,y)为曲边的曲为曲边的曲边梯形,其截面面积为:边梯形,其截面面积为:先计算截面面积。先计算截面面积。28 一一般般地地,过过区区间间a,b上上任任一一点点x且且平平行行于于yOz面面的的平平面面截曲顶柱体所得截面面积为:截曲顶柱体所得截面面积为:于于是是,应应用用计计算算平平行行截截面面面面积积为为已已知知的的立方体体积的方法立方体体积的方法,得曲顶柱体体积为得曲顶柱体体积为 这这个个体体积积也也就就是是所所求求二二重重积积分分的的值值,从从而而有等式有等式o a x b xyz29 上式右端的积分叫做先对上式右端的积分叫做先对y、后对后对x的二次积分。的二次积分。就就是是说说,先先把把x看看作作常常数数,把把f(x,y)只只看看作作y的的函函数,并对数,并对y计算从计算从 1(x)到到 2(x)的定积分;的定积分;再再把把计计算算所所得得的的结结果果(是是x的的函函数数)对对x计计算算在在区区间间a,b上的定积分。上的定积分。这个先对这个先对y、后对后对x的二次积分也常记作的二次积分也常记作30Y型型DyoxdcyoxdcD31 计算时先把计算时先把y看作常数,因此看作常数,因此f(x,y)是是x的的一元函数,一元函数,在区间在区间 1(y)x 2(y)上对上对x积分积分,得到得到一个关于一个关于y的函数的函数,再在区间再在区间c y d上对上对y积分积分,。这就是把二重积分化为先对这就是把二重积分化为先对x、后对、后对 y的二次积分的公式。的二次积分的公式。32 应用公式应用公式(1)时,积分区域必须是时,积分区域必须是X型区域。型区域。应用公式应用公式(2)时,积分区域必须是时,积分区域必须是Y型区域。型区域。X型区域型区域D的特点是:穿过的特点是:穿过D内部且平行于内部且平行于y轴轴的直线与的直线与D的边界相交不多于两点。的边界相交不多于两点。Y型区域型区域D的特点是:穿过的特点是:穿过D内部且平行于内部且平行于x轴的直线与轴的直线与D的边界相交不多于两点。的边界相交不多于两点。33 若积分区域若积分区域D既不是既不是X型区域型区域也不是也不是Y型区域,型区域,D,此时要将,此时要将积分区域积分区域D分成分成几部分几部分,使得,使得每一部分是每一部分是X型区域或型区域或Y型区域,型区域,再利用积分关于区域的可加性再利用积分关于区域的可加性可得整个区域上的积分。可得整个区域上的积分。yox 若积分区域若积分区域D既是既是X型区域也是型区域也是Y型区域,则。型区域,则。这表明二次积分可以交换积分次序。这表明二次积分可以交换积分次序。344 二重积分计算的一般方法二重积分计算的一般方法 要依被积函数及积分区域两方面的情况选要依被积函数及积分区域两方面的情况选定积分顺序。定积分顺序。化为两次单积分化为两次单积分 (1)作图,确定作图,确定D的类型。的类型。(2)选定积分顺序。选定积分顺序。(3)定出积分上下限。定出积分上下限。(4)计算定积分。计算定积分。确定积分顺序之后,积分的上下限是依确定积分顺序之后,积分的上下限是依D的的特点而定的。特点而定的。要使两次积分都能要使两次积分都能“积得出积得出”,“易积出易积出”。3536O 1 x(4,-2)-221 y(1,1)评评注注 本本例例说说明明,在在化化二二重重积积分分为为二二次次积积分分时时,为为了了计计算算简简便便,需需要要选选择择恰恰当当的的二二次次积积分分的的次次序序,这这时时既既要要考考虑虑区区域域D的的形形状状,又又要要考考虑虑函函数数f(x,y)的特性。的特性。375 交换积分顺序交换积分顺序由由所所给给的的积积分分顺顺序序及及积积分分限限写写出出D的的不不等等式式表示并画出积分区域的草图表示并画出积分区域的草图由积分区域按新的积分顺序确定积分限。由积分区域按新的积分顺序确定积分限。例例3 交换以下积分的积分顺序交换以下积分的积分顺序38课内练习一课内练习一 改变以下二次积分的积分次序改变以下二次积分的积分次序391o2xy1yx40y- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 积分 概念 性质
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【快乐****生活】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【快乐****生活】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【快乐****生活】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【快乐****生活】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文