测量学测量误差基本知识.pptx
《测量学测量误差基本知识.pptx》由会员分享,可在线阅读,更多相关《测量学测量误差基本知识.pptx(47页珍藏版)》请在咨信网上搜索。
2024/8/25 周日测量学5-1 测量误差的概念一、测量误差的来源1、仪器精度的局限性2、观测者感官的局限性3、外界环境的影响2024/8/25 周日测量学二、测量误差的分类与对策(一)分类系统误差系统误差在相同的观测条件下,误差 出现在符号和数值相同,或按一定的规律变化。偶然误差偶然误差在相同的观测条件下,误差出现的符号和数值大小都不相同,从表面看没有任何规律性,但大量的误差有“统计规律”粗差粗差特别大的误差(错误)2024/8/25 周日测量学(二)处理原则粗差粗差细心,多余观测系统误差系统误差找出规律,加以改正偶然误差偶然误差多余观测,制定限差2024/8/25 周日测量学如何处理含有偶然误差的数据?如何处理含有偶然误差的数据?n n例如:n n对同一量观测了n次n n观测值为 l1,l2,l3,.lnn n如何取值?如何评价数据的精度?2024/8/25 周日测量学n n例如:n n对358个三角形在相同的观测条件下观测了全部内角,三角形内角和的误差i为i=i+i+i-180其结果如表5-1,图5-1,分析三角形内角和的误差I的规律。2024/8/25 周日测量学误差区间误差区间 负误差负误差 正误差正误差 误差绝对值误差绝对值d d K K/n K K/n K K/n K K/n K K/n K K/n 0303 45 450.1260.126 46 46 0.128 91 0.254 0.128 91 0.254 36 36 40 400.1120.112 41 0.115 81 0.226 41 0.115 81 0.226 69 33 69 330.0920.092 33 0.092 66 0.184 33 0.092 66 0.184 912 23 912 230.064 21 0.0590.064 21 0.05944440.1230.123 1215 1215 17 170.0470.047 16 0.045 16 0.04533330.0920.092 1518 1518 13 130.0360.036 13 13 0.036 0.03626260.0730.073 1821 1821 6 60.017 5 0.014 0.017 5 0.014 11110.0310.031 2124 4 2124 40.011 20.011 2 0.006 0.0066 60.0170.017 24 24以上以上 0 0 0 0 0 0 0 0 0 00 0 181 0.505 177 0.495 358 1.000181 0.505 177 0.495 358 1.000 表表表表2-1 2-1 2-1 2-1 偶然误差的统计偶然误差的统计偶然误差的统计偶然误差的统计 2024/8/25 周日测量学-24-21-18-15-12-9-6-3 0 +3+6+9+12+15+18+21+24 X=k/d2024/8/25 周日测量学偶然误差偶然误差的特性的特性n n有限性:在有限次观测中,偶然误差应小于限值。n n渐降性:误差小的出现的概率大n n对称性:绝对值相等的正负误差概率相等n n抵偿性:当观测次数无限增大时,偶然误差的平均数趋近于零。5-2评定精度的标准评定精度的标准n n方差和标准差(中误差)标准差常用m表示,在测绘界称为中误差。按观测值的真误差计算中误差按观测值的真误差计算中误差按观测值的真误差计算中误差按观测值的真误差计算中误差三、相对误差 某些观测值的误差与其本身大小有关用观测值的中误差与观测值之比的形式描述观测的质量,称为相对误差(全称“相对中误差”)2024/8/25 周日测量学 例,用钢卷尺丈量200m和40m两段距离,量距的中误差都是2cm,但不能认为两者的精度是相同的 前者的相对中误差为002200 110000 而后者则为00240l2000 前者的量距精度高于后者。正态分布正态分布正态分布的特征正态分布的特征n n正态分布密度以 为对称轴,并在 处达到最大。n n当 时,f(x)0,所以f(x)以x轴为渐近线。n n用求导方法可知,在 处f(x)有两个拐点。n n对分布密度在某个区间内的积分就等于随机变量在这个区间内取值的概率极限误差极限误差三、容许误差2024/8/25 周日测量学n n但大多数被观测对象的真值不知,任何评定观测值的精度,即:=?m=?寻找最接近真值的值x5-3观测值的算术平均值及改正值 集中趋势的测度(最优值)集中趋势的测度(最优值)n n中中位位数数:设设把把n n个个观观测测值值按按大大小小排排列列,这这时时位位于最中间的数就是于最中间的数就是“中位数中位数”。n n众众数数:在在n n个个数数中中,重重复复出出现现次次数数最最多多的的数数就就是是“众数众数”。n n切尾平均数切尾平均数:去掉去掉 l lmaxmax,l,lminmin以后的平均数。以后的平均数。n n调和平均数:调和平均数:算术平均数:满足最小二乘原则的最优解满足最小二乘原则的最优解证明(证明(x是最或然值)是最或然值)n n n n将上列等式相加,并除以n,得到n n 观测值的改正值观测值的改正值n n若被观测对象的真值不知,则取平均数 为最优解x改正值的特性定义改正值5-4观测值的精度评定观测值的精度评定n n标准差可按下式计算中误差证明证明n n将上列左右两式方便相减,得将上列左右两式方便相减,得取和取和取和取和n n 计算标准差例子计算标准差例子 小结小结n n一、已知真值一、已知真值X X,则,则真误差真误差n n一、真值不知,则一、真值不知,则二、中误差二、中误差5-5误差传播定律误差传播定律n n已知:mx1,mx2,-mxnn n求:my=?误差传播定律误差传播定律n n全微分:式中f有正有负 my2 m12 m22 mn2中误差关系式中误差关系式:n n小结n n第一步:写出函数式n n第二步:写出全微分式n n第三步:写出中误差关系式n n注意:注意:只有自变量微分之间相互独立才可以进只有自变量微分之间相互独立才可以进一步写出中误差关系式一步写出中误差关系式。5-6 误差传播定律误差传播定律应用举例应用举例应用举例应用举例观测值:斜距S和竖直角v待定值:高差h误差传播定律误差传播定律应用举例应用举例应用举例应用举例观测值:斜距S和竖直角v待定值:水平距离D误差传播定律误差传播定律应用举例应用举例应用举例应用举例算术平均值算术平均值 已知:已知:mm1 1=m=m2 2=.=m.=mn n=m =m 求:求:mx算例:用三角形闭合差求测角中误差算例:用三角形闭合差求测角中误差误差传播定律应用举例误差传播定律应用举例1、测回法观测水平角时盘左、盘右的限差不超、测回法观测水平角时盘左、盘右的限差不超过过40秒;秒;2、用、用DJ6经纬仪对三角形各内角观测一测回的经纬仪对三角形各内角观测一测回的限差;限差;3、两次仪器高法的高差限差。、两次仪器高法的高差限差。5-7加权平均数及其中误差加权平均数及其中误差n n现有三组观测值,计算其最或然值现有三组观测值,计算其最或然值A A组:组:123.34,123.39,123.35123.34,123.39,123.35B B组:组:123.31,123.30,123.39,123.32123.31,123.30,123.39,123.32C C组:组:123.34,123.38,123.35,123.39,123.32123.34,123.38,123.35,123.39,123.32n n各组的平均值各组的平均值 A组:B B组:组:123.333123.333 C C组:组:123.356123.356 =?123.360加权平均数加权平均数n n ()()()()()n n各组的平均及其权各组的平均及其权 A A组:组:123.360 123.360 权权P PA A=3=3 B B组:组:123.333 P123.333 PB B=4=4 C C组:组:123.356 P123.356 PC C=5=5一、权与中误差一、权与中误差n n平均数的权平均数的权p pA A=3=3n n平均数的中误差平均数的中误差n nmm单位权中误差单位权中误差n n权与误差的平方成反比权与误差的平方成反比二、加权平均数二、加权平均数n n 简单平均值的理论依据为简单平均值的理论依据为加权平均数加权平均数n n加权平均值的理论依据为加权平均值的理论依据为三、加权平均值的中误差三、加权平均值的中误差 四、单位权中误差的计算四、单位权中误差的计算如果m可以用真误差j计算,则如果m要用改正数v计算,则加权平均时标准差的算例加权平均时标准差的算例五、权倒数传播定律五、权倒数传播定律有;权倒数传播定律 m2 m2 m2 m2例题例题有;已知 求:- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 测量学 测量误差 基本知识
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【快乐****生活】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【快乐****生活】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【快乐****生活】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【快乐****生活】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文