分享
分销 收藏 举报 申诉 / 31
播放页_导航下方通栏广告

类型重积分主要内容.pptx

  • 上传人:w****g
  • 文档编号:4173192
  • 上传时间:2024-08-11
  • 格式:PPTX
  • 页数:31
  • 大小:415.73KB
  • 下载积分:12 金币
  • 播放页_非在线预览资源立即下载上方广告
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    积分 主要内容
    资源描述:
    主主 要要 内内 容容1.二重积分的概念与性质二重积分的概念与性质2.二重积分的计算法二重积分的计算法3.二重积分的应用二重积分的应用4.三重积分的概念及其计算法三重积分的概念及其计算法5.利用柱面坐标和球面坐标计算利用柱面坐标和球面坐标计算三重积分三重积分第九章第九章 重重 积积 分分第九章第九章 重重 积积 分分 1、理解重积分的定义,熟悉重积分的性质;2、掌握二重积分的计算法(包括直角坐标,极坐标),掌握三重积分的计算法 (包括直角坐标,柱面坐标,球面坐标)3、熟悉重积分在几何、物理中的应用(包括平面图形的面积、立体体积;平面薄片和空间立体的质量、重心和转动惯量(惯性矩);第一节第一节 二重积分的概念二重积分的概念与性质与性质二重积分的引入二重积分的引入二重积分的概念二重积分的概念二重积分的性质二重积分的性质=底面积底面积高高特点特点:平顶:平顶.=?特点特点:曲顶:曲顶.2曲顶柱体曲顶柱体的体积的体积一、问题的提出一、问题的提出1平顶柱体平顶柱体的体积的体积二、二重积分的概念二、二重积分的概念1什么是曲顶柱体?什么是曲顶柱体?显然,显然,平顶柱体的体积平顶柱体的体积=底面积底面积高高,而曲顶,而曲顶柱体的体积不能直接用上式计算,那么怎样来计柱体的体积不能直接用上式计算,那么怎样来计算呢?算呢?以以 xoy 平面的平面的有界闭区域有界闭区域D为底为底、侧面是以、侧面是以D的边界曲线的边界曲线C作准线而母线平行于作准线而母线平行于 轴的柱面,轴的柱面,顶是曲面顶是曲面这里这里且且在在D上连续所形成的立体上连续所形成的立体称为称为曲顶柱体曲顶柱体(如上(如上图)。图)。2.其体积其体积V怎样计算?怎样计算?由第五章由第五章求曲边梯形面积的方法求曲边梯形面积的方法就不难想到就不难想到下面的解决办法:下面的解决办法:用一组曲线网将用一组曲线网将xoy面上的区域面上的区域D划分划分为为n个小区域个小区域也同时记为它们的面积,也同时记为它们的面积,分别以各小闭区域的边界曲线为准线,作母线分别以各小闭区域的边界曲线为准线,作母线平行于平行于z轴的柱面,这些柱面轴的柱面,这些柱面把原曲顶柱体分为把原曲顶柱体分为n个小曲顶柱体个小曲顶柱体当这些小闭区域的直径很小时,当这些小闭区域的直径很小时,连续函数连续函数 的变化不大,这时小的变化不大,这时小曲顶柱体可曲顶柱体可近似近似看作平顶柱体在每个看作平顶柱体在每个中各中各任取任取一点一点为高而底为为高而底为的小平顶柱体体积为的小平顶柱体体积为这这n个平顶柱体体积之个平顶柱体体积之和和可作为整个曲顶柱体体积的近似值令可作为整个曲顶柱体体积的近似值令n个个小闭区域的小闭区域的直径中的最大值(记作直径中的最大值(记作)趋于零趋于零,取上述和的取上述和的极限极限,所得的极限就,所得的极限就定义为所论曲顶柱体的体积定义为所论曲顶柱体的体积 综合起来,即所谓“分割、近似、作分割、近似、作和、取极限和、取极限”四步。求曲顶柱体的体积采用求曲顶柱体的体积采用“分割、求和、分割、求和、取极限取极限”的方法,如下动画演示的方法,如下动画演示 求曲顶柱体的体积采用求曲顶柱体的体积采用“分割、近似、分割、近似、求和、取极限求和、取极限”的方法,如下动画演示的方法,如下动画演示 求曲顶柱体的体积采用求曲顶柱体的体积采用“分割、近似、分割、近似、求和、取极限求和、取极限”的方法,如下动画演示的方法,如下动画演示 求曲顶柱体的体积采用求曲顶柱体的体积采用“分割、近似、分割、近似、求和、取极限求和、取极限”的方法,如下动画演示的方法,如下动画演示 求曲顶柱体的体积采用求曲顶柱体的体积采用“分割、近似、分割、近似、求和、取极限求和、取极限”的方法,如下动画演示的方法,如下动画演示 求曲顶柱体的体积采用求曲顶柱体的体积采用“分割、近似、分割、近似、求和、取极限求和、取极限”的方法,如下动画演示的方法,如下动画演示 求曲顶柱体的体积采用求曲顶柱体的体积采用“分割、近似、分割、近似、求和、取极限求和、取极限”的方法,如下动画演示的方法,如下动画演示步骤如下:步骤如下:(3)用若干个小平顶柱体用若干个小平顶柱体体积之体积之和和近似近似表示曲顶表示曲顶柱体的体积,柱体的体积,(4)取极限:曲顶柱体的体积取极限:曲顶柱体的体积(1)先先分割分割曲顶柱体的曲顶柱体的底,并取典型小区域底,并取典型小区域求平面薄片的质量求平面薄片的质量 将薄片将薄片分割分割成若干小块,成若干小块,取典型小块,将其取典型小块,将其近似近似看作均匀薄片,看作均匀薄片,所有小块质量之所有小块质量之和和近似等于薄片总质量(近似等于薄片总质量(极限)极限)3.二重积分的定义二重积分的定义积积积积分分分分区区区区域域域域积积积积分分分分和和和和被被被被积积积积函函函函数数数数积积积积分分分分变变变变量量量量被被被被积积积积表表表表达达达达式式式式面面面面积积积积元元元元素素素素注:注:(3)几何意义:几何意义:当被积函数大于零时,二重积分是柱当被积函数大于零时,二重积分是柱体的体积体的体积当被积函数小于零时,二重积分是柱体体积的负值当被积函数小于零时,二重积分是柱体体积的负值D D(5)面积元素为面积元素为二重积分可写为二重积分可写为性质性质当当 为常数时为常数时,性质性质(二重积分与定积分有类似的性质)(二重积分与定积分有类似的性质)三、二重积分的性质三、二重积分的性质性质性质对区域具有可加性对区域具有可加性性质性质 若若 为为D的面积,的面积,性质性质 若在若在D上上推论推论(1)则有则有性质性质(二重积分估值不等式)(二重积分估值不等式)解解性质性质(二重积分中值定理)(二重积分中值定理)思考题思考题 将二重积分定义与定积分定义进行比较,将二重积分定义与定积分定义进行比较,找出它们的相同之处与不同之处找出它们的相同之处与不同之处.课外思考题:课外思考题:能否用一个积分式表示二者能否用一个积分式表示二者?定积分与二重积分都表示某个和式的极限定积分与二重积分都表示某个和式的极限值,且此值只与被积函数及积分区域有关不值,且此值只与被积函数及积分区域有关不同的是定积分的积分区域为区间,被积函数为同的是定积分的积分区域为区间,被积函数为定义在区间上的一元函数,而二重积分的积分定义在区间上的一元函数,而二重积分的积分区域为平面区域,被积函数为定义在平面区域区域为平面区域,被积函数为定义在平面区域上的二元函数上的二元函数思考题解答思考题解答二重积分的定义二重积分的定义二重积分的性质二重积分的性质(7条性质)二重积分的几何意义二重积分的几何意义(曲顶柱体的体积)(曲顶柱体的体积)(和式的极限)(和式的极限)四、小结与作业四、小结与作业作业:作业:P.93.习题习题9-12;4(2),(3);5(2),(4).
    展开阅读全文
    提示  咨信网温馨提示:
    1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
    2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
    3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
    4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
    5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
    6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

    开通VIP折扣优惠下载文档

    自信AI创作助手
    关于本文
    本文标题:重积分主要内容.pptx
    链接地址:https://www.zixin.com.cn/doc/4173192.html
    页脚通栏广告

    Copyright ©2010-2026   All Rights Reserved  宁波自信网络信息技术有限公司 版权所有   |  客服电话:0574-28810668    微信客服:咨信网客服    投诉电话:18658249818   

    违法和不良信息举报邮箱:help@zixin.com.cn    文档合作和网站合作邮箱:fuwu@zixin.com.cn    意见反馈和侵权处理邮箱:1219186828@qq.com   | 证照中心

    12321jubao.png12321网络举报中心 电话:010-12321  jubao.png中国互联网举报中心 电话:12377   gongan.png浙公网安备33021202000488号  icp.png浙ICP备2021020529号-1 浙B2-20240490   


    关注我们 :微信公众号  抖音  微博  LOFTER               

    自信网络  |  ZixinNetwork