算法设计与分析蛮力法.pptx
《算法设计与分析蛮力法.pptx》由会员分享,可在线阅读,更多相关《算法设计与分析蛮力法.pptx(29页珍藏版)》请在咨信网上搜索。
1、算法分析与设计1蛮力法蛮力法 Brute Force蛮力法(枚举法、穷举法,暴力法)要求设计蛮力法(枚举法、穷举法,暴力法)要求设计者找出所有可能的方法,然后选择其中的一种者找出所有可能的方法,然后选择其中的一种方法,若该方法不可行则试探下一种可能的方方法,若该方法不可行则试探下一种可能的方法。法。蛮力法蛮力法是一种直接解决问题的方法,常常直接是一种直接解决问题的方法,常常直接基于问题的描述和所设计的概念定义。基于问题的描述和所设计的概念定义。“力力”指计算机的能力,而不是人的智力。指计算机的能力,而不是人的智力。蛮力法常常是最容易应用的方法。蛮力法常常是最容易应用的方法。求求an(n为非负整
2、数)为非负整数)用连续整数检测算法计算用连续整数检测算法计算GCD(m,n)算法分析与设计2蛮力法蛮力法 Brute Force蛮力法不是一个最好的算法(巧妙和高效的算法蛮力法不是一个最好的算法(巧妙和高效的算法很少出自蛮力),但当我们想不出更好的办法时,很少出自蛮力),但当我们想不出更好的办法时,它也是一种有效的解决问题的方法。它也是一种有效的解决问题的方法。它可能是惟一一种几乎什么问题都能解决的一般它可能是惟一一种几乎什么问题都能解决的一般性方法,常用于一些非常基本、但又十分重要的性方法,常用于一些非常基本、但又十分重要的算法,比如计算算法,比如计算n个数字的和,求一个列表的最个数字的和,
3、求一个列表的最大元素等等。大元素等等。算法分析与设计3蛮力法的优点蛮力法的优点逻辑清晰,编写程序简洁逻辑清晰,编写程序简洁对于一些重要的问题对于一些重要的问题(比如:排序、查找、矩阵(比如:排序、查找、矩阵乘法和字符串匹配)乘法和字符串匹配),可以产生一些合理的算法,可以产生一些合理的算法解决问题的实例很少时,可以花费较少的代价解决问题的实例很少时,可以花费较少的代价可以解决一些小规模的问题(使用优化的算法没可以解决一些小规模的问题(使用优化的算法没有必要,而且某些优化算法本身较复杂)有必要,而且某些优化算法本身较复杂)可以作为其他高效算法的衡量标准可以作为其他高效算法的衡量标准算法分析与设计
4、4使用蛮力法的几种情况使用蛮力法的几种情况搜索所有的解空间搜索所有的解空间搜索所有的路径搜索所有的路径直接计算直接计算模拟和仿真模拟和仿真算法分析与设计5比较熟悉的蛮力法应用比较熟悉的蛮力法应用选择排序和起泡排序选择排序和起泡排序选择排序:选择排序:每趟排序在当前待排序序列中选出关键码每趟排序在当前待排序序列中选出关键码最小的记录,添加到有序序列中。最小的记录,添加到有序序列中。起泡排序:两两比较相邻记录关键码,如果反序则交起泡排序:两两比较相邻记录关键码,如果反序则交换,直到没有反序的记录为止。换,直到没有反序的记录为止。顺序查找和蛮力字符串匹配顺序查找和蛮力字符串匹配顺序查找:从线性表的一
5、端向另一端逐个将关键码与顺序查找:从线性表的一端向另一端逐个将关键码与给定值进行比较,若相等,则查找成功,给出该记录给定值进行比较,若相等,则查找成功,给出该记录在表中的位置;若整个表检测完仍未找到与给定值相在表中的位置;若整个表检测完仍未找到与给定值相等的关键码,则查找失败,给出失败信息。等的关键码,则查找失败,给出失败信息。蛮力字符串匹配:即朴素模式串匹配蛮力字符串匹配:即朴素模式串匹配算法分析与设计6 根根据据问问题题中中的的条条件件将将可可能能的的情情况况一一一一列列举举出出来来,逐逐一一尝尝试试从从中中找找出出满满足足问问题题条条件件的的解解。但但有有时时一一一一列列举举出出的的情情
6、况况数数目目很很大大,如如果果超超过过了了我我们们所所能能忍忍受受的的范范围围,则则需需要要进进一一步步考考虑虑,排排除除一一些些明明显显不不合合理理的的情情况况,尽尽可可能能减减少少问问题题可可能能解解的的列列举数目。举数目。用用蛮蛮力力法法解解决决问问题题,通通常常可可以以从从两两个个方方面面进进行行算算法设计:法设计:1)找出枚举范围:分析问题所涉及的各种情况。找出枚举范围:分析问题所涉及的各种情况。2 2)找找出出约约束束条条件件:分分析析问问题题的的解解需需要要满满足足的的条条件件,并并用用逻辑表达式表示。逻辑表达式表示。蛮力法解题步骤蛮力法解题步骤算法分析与设计7算法分析与设计8算
7、法算法1如下:如下:main()main()int x,y,z;int x,y,z;for(x=1;x=20;x=x+1)for(x=1;x=20;x=x+1)for(y=1;y=34;y=y+1)for(y=1;y=34;y=y+1)for(z=1;z=100;z=z+1)for(z=1;z=100;z=z+1)if(100=x+y+z&100=5*x+3*y+z/3)if(100=x+y+z&100=5*x+3*y+z/3)print(the cock number is,x)print(the cock number is,x);print(the hen number is,y)pri
8、nt(the hen number is,y);print(the chick number is print(the chick number is,z);z);枚举尝试枚举尝试20*34*100=68000次次算法分析与设计9算法分析与设计10main()main()int x,y,z;int x,y,z;for(x=1;x=20;x=x+1)for(x=1;x=20;x=x+1)for(y=1;y=33;y=y+1)for(y=1;y=33;y=y+1)z=100-x-y;z=100-x-y;if(z%3=0&5*x+3*y+z/3=100)if(z%3=0&5*x+3*y+z/3=10
9、0)print(the cock number is,x)print(the cock number is,x);print(the hen number is,y)print(the hen number is,y);print(print(the chick number is the chick number is,z);z);枚举尝试枚举尝试20*33=660次次Z能被能被3整除时,才会判断整除时,才会判断“5*x+3*y+z/3=100算法分析与设计11例2求所有的三位数,它除以求所有的三位数,它除以11所得的余数等所得的余数等于它的三个数字的平方和。于它的三个数字的平方和。解题思路
10、:三位数只有解题思路:三位数只有900个,可用枚举个,可用枚举法解决,枚举时可先估计有关量的范围,法解决,枚举时可先估计有关量的范围,以缩小讨论范围,减少计算量。以缩小讨论范围,减少计算量。解:设这个三位数的百位、十位、个位的数字分别为解:设这个三位数的百位、十位、个位的数字分别为x,y,z。由于任何数除以。由于任何数除以11所得余数都不大于所得余数都不大于10,所以,所以x2+y2+z210,从而从而1x3,0y3,0z3。所求三位数必在以。所求三位数必在以下数中:下数中:100,101,102,103,110,111,112,120,121,122,130,200,201,202,211,
11、212,220,221,300,301,310。不难验证只有不难验证只有100,101两个数符合要求。两个数符合要求。例例3 3 狱吏问题狱吏问题 某国王对囚犯进行大赦,让一狱吏某国王对囚犯进行大赦,让一狱吏n n次通过一排次通过一排锁着的锁着的n n间牢房,每通过一次,按所定规则转动间牢房,每通过一次,按所定规则转动n n间牢间牢房中的某些门锁房中的某些门锁,每转动一次每转动一次,原来锁着的被打开原来锁着的被打开,原来打开的被锁上;通过原来打开的被锁上;通过n n次后,门锁开着的,牢房次后,门锁开着的,牢房中的犯人放出,否则犯人不得获释。中的犯人放出,否则犯人不得获释。转动门锁的规则是这样的
12、,第一次通过牢房,要转动门锁的规则是这样的,第一次通过牢房,要转动每一把门锁,即把全部锁打开;第二次通过牢房转动每一把门锁,即把全部锁打开;第二次通过牢房时,从第二间开始转动,每隔一间转动一次;第时,从第二间开始转动,每隔一间转动一次;第k k次次通过牢房,从第通过牢房,从第k k间开始转动,每隔间开始转动,每隔k-1 k-1 间转动一次;间转动一次;问通过问通过n n次后,哪些牢房的锁仍然是打开的?次后,哪些牢房的锁仍然是打开的?算法分析与设计14算法设计算法设计1 1:1 1)一维数组一维数组anan记录记录n个锁的状态个锁的状态 1:1:被锁上被锁上 0:0:被打开被打开2 2)对)对i
13、 i号锁的一次开关锁可以转化为算术运算:号锁的一次开关锁可以转化为算术运算:ai=1-aiai=1-ai。3 3)第一次转动的是)第一次转动的是1 1,2 2,3 3,n n号牢房;号牢房;第二次转动的是第二次转动的是2 2,4 4,6 6,号牢房;号牢房;第第i i次转动的是次转动的是i i,2i2i,3i3i,4i4i,号牢号牢 房,是起点为房,是起点为i i,公差为,公差为i i的等差数列。的等差数列。4 4)不做其它的优化,用蛮力法通过循环模拟狱)不做其它的优化,用蛮力法通过循环模拟狱吏的开关锁过程,最后当第吏的开关锁过程,最后当第i号牢房对应的数组号牢房对应的数组元素元素aiai为为
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 算法 设计 分析 蛮力法
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【丰****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【丰****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。