随机变量的数学期望省公共课一等奖全国赛课获奖课件.pptx
《随机变量的数学期望省公共课一等奖全国赛课获奖课件.pptx》由会员分享,可在线阅读,更多相关《随机变量的数学期望省公共课一等奖全国赛课获奖课件.pptx(48页珍藏版)》请在咨信网上搜索。
第四章 随机变量数字特征数学期望方差协方差和相关系数矩与协方差矩阵第1页4.1 4.1 数学期望数学期望 4.1.1 概念概念例例1 1、盒子中有、盒子中有6 6个球(如图),个球(如图),122333从中任取一球再放回,重复了三次,问三次从中任取一球再放回,重复了三次,问三次抽到号码平均值。抽到号码平均值。第2页定义定义4.1:设离散型随机变量设离散型随机变量X 分布列是分布列是 ,若级数若级数 收收敛敛,则则称称随随机机变变量量 X 数数学学期期望望存存在在,且且称称级数级数 和为和为 X 数学期望,并记为数学期望,并记为EX,有时也称,有时也称 EX 为为 X 均值。均值。第3页对连续型随机变量对连续型随机变量 X 数学期望类似可定数学期望类似可定义以下:义以下:定义定义4.2:假如连续型随机变量假如连续型随机变量X含有密度函数含有密度函数 f(x),积分,积分 收敛,则称收敛,则称 X 数学数学期望存在,不然称期望存在,不然称X数学期望不存在。若数学期望不存在。若X 数学期望存在,称积分值数学期望存在,称积分值 为为 X 数学期望,也记为数学期望,也记为 EX。第4页注注1、若、若 ,仍称,仍称X 数学期望不存在。数学期望不存在。2、离散型取有限个值,连续型密度函数只在、离散型取有限个值,连续型密度函数只在有限区间上积分,则有限区间上积分,则X期望一定存在。期望一定存在。3、离散型只取非负值,连续型只在、离散型只取非负值,连续型只在x0时时f(x)0,则只需直接计算期望。,则只需直接计算期望。第5页4.1.2 4.1.2 常见随机变量数学期望常见随机变量数学期望 (1)()(01)分布)分布p1-pP10X第6页(2)二项分布)二项分布B(n,p)第7页(3)泊松分布)泊松分布P()第8页(4)几何分布)几何分布G(p)第9页(5)超几何分布)超几何分布H(N,M,n)第10页(6)均匀分布)均匀分布U(a,b)第11页(7)指数分布)指数分布第12页(8)正态分布)正态分布 N(,2 2)第13页4.1.3 4.1.3 随机变量函数数学期望随机变量函数数学期望 定理定理4.14.1:设设Y是随机变量是随机变量X函数,即函数,即 (g 是连续函数),是连续函数),(1 1)若)若X是离散型随机变量,其分布律为是离散型随机变量,其分布律为而级数而级数 绝对收敛,则有绝对收敛,则有第14页(2 2)若)若 X 是连续型随机变量,其密是连续型随机变量,其密度函数为度函数为 ,若积分,若积分 绝对收敛,则有绝对收敛,则有 第15页定理定理4.24.2:设设Z Z是二维随机变量是二维随机变量(X,Y)函数,即函数,即Zg(X,Y),),则则(1 1)若)若(X,Y)是二维离散型随机变量,有是二维离散型随机变量,有(2 2)若)若(X,Y)是二维连续型随机变量,有是二维连续型随机变量,有第16页例例1 1:设:设 XB(n,p),),求求EX(X1)。解:因解:因XB(n,p),),则则X分布律为分布律为令令 Yg(X)X(X1)第17页例例2 2、已知、已知XN(0,1),求,求E(X4)第18页例例3 3、(X,Y)联合密度函数为:联合密度函数为:求:求:EY第19页例例4 4:设随机变量:设随机变量(X,Y)服从二维正态分服从二维正态分 布,其密度为布,其密度为求求 数学期望数学期望。解:解:第20页例例5 5:设:设X、Y相互独立同服从标准正态分布相互独立同服从标准正态分布N(0,1),),求求 E(maxX,Y)。解:由题设,解:由题设,(X,Y)联合密度为联合密度为第21页(1 1)ECC,(C为常数为常数)(2 2)E(CX)CEX,(C为常数为常数)(3 3)E(X+Y)EXEY E(aX+b)aEXb,E()(4 4)若若X、Y是相互独立随机变量,则是相互独立随机变量,则 E(XY)EXEY。4.1.4 4.1.4 数学期望性质数学期望性质第22页例例6 6、盒中有、盒中有N个球,其中个球,其中M个黑球,个黑球,N-M个个白球,从中任取白球,从中任取n个球,令个球,令X表示取得黑球表示取得黑球个数,个数,求求 EX。第23页4.2 随机变量方差随机变量方差 4.2.1 4.2.1 方差定义方差定义 对随机变量特征进行考查,除了数学期对随机变量特征进行考查,除了数学期望外,还要考查望外,还要考查X可取值与可取值与EX偏离情况,因偏离情况,因为为XEX可正可负可正可负,所以用所以用XEX2 来考虑来考虑。第24页定义定义4.34.3:设设X是一个随机变量,若是一个随机变量,若(XEX)2 数学期望存在,则称数学期望存在,则称E(XEX)2为为X方差,记方差,记为为DX或或Var(X),即即DXE(XEX)2 离散型随机变量:离散型随机变量:连续型随机变量连续型随机变量:第25页方差计算公式:方差计算公式:4.2.2 4.2.2 几个常见随机变量方差几个常见随机变量方差(1 1)()(0 01 1)分布)分布p1-pP10X第26页(2 2)二项分布)二项分布:(3 3)泊松分布)泊松分布:(4 4)均匀分布:)均匀分布:第27页(5 5)指数分布)指数分布:第28页(6 6)正态分布:)正态分布:第29页4.2.3 4.2.3 方差性质方差性质(1 1)D(C)0,(C为常数为常数)(2 2)D(CX)C2DX,(C为常数为常数)(3 3)若)若X、Y是相互独立随机变量,则是相互独立随机变量,则 D(X+Y)=D(X-Y)DXDY(4 4)DX0第30页例例1 1、已已知知 XN(1,22),YN(2,22),且且X、Y相互独立,求:相互独立,求:X-2Y+3数学期望和方差。数学期望和方差。第31页定理:切比雪夫不等式定理:切比雪夫不等式第32页4.3 协方差与相关系数协方差与相关系数4.3.1 协方差与相关系数概念协方差与相关系数概念 我们在证实方差性质时看到,当两个随我们在证实方差性质时看到,当两个随机变量机变量X和和Y相互独立时,有相互独立时,有但当但当 X 和和 Y 不相互独立时,它们之间关系不相互独立时,它们之间关系呢?呢?第33页称称 为为 X、Y 相关系数相关系数。定义定义4.44.4:设设 X、Y 是两个随机变量,称是两个随机变量,称为随机变量为随机变量 X、Y 协方差,记为协方差,记为 即:即:第34页相关系数特征相关系数特征:是一个无量纲是一个无量纲量。它描述是量。它描述是 X、Y 之间线性相关程之间线性相关程度。度。特殊特殊,当当时时,称称X,Y不相关不相关。结论结论:X、Y相互独立,则其一定不相关相互独立,则其一定不相关;但若但若 X,Y不相关,却未必相互独立不相关,却未必相互独立。第35页4.3.2 4.3.2 协方差与相关系数性质协方差与相关系数性质1、协方差性质、协方差性质:第36页2、相关系数性质、相关系数性质:(1)|1;(2)|=1 充要条件为充要条件为 X 与与 Y 以概以概率率1 1线性相关。即存在常数线性相关。即存在常数 a、b,a0 0,使使第37页例例1 1、已知随机变量、已知随机变量X,Y相互独立,且相互独立,且求求 3X-Y 与与 X+Y 相关系数。相关系数。第38页独立与不相关关系:独立与不相关关系:X、Y相互独立,则其一定不相关相互独立,则其一定不相关;但若但若 X,Y不相关,却未必相互独立不相关,却未必相互独立。例例2 2、已知、已知(X,Y)联合密度函数为)联合密度函数为:证实:证实:X,Y 不相关不相关,X,Y 不独立不独立。第39页4.4 矩、协方差矩阵矩、协方差矩阵4.4.1 矩矩定义定义4.54.5:设设X、Y是随机变量是随机变量,称为称为Xk阶原点矩阶原点矩 称为称为Xk阶中心阶中心矩矩称为称为X与与Yk+l阶混合中心矩阶混合中心矩第40页4.4.2 协方差矩阵协方差矩阵设设n维随机变量维随机变量 X ,记记 称称 为为X期望向量期望向量,记记 为为 Xi 与与Xj 协方差协方差,则称则称n阶矩阵阶矩阵为随机变量为随机变量X协方差矩阵协方差矩阵。设设n维随机变量维随机变量 X ,记记 称称 为为X期望向量期望向量,记记 为为 Xi 与与Xj 协方差协方差,则称则称n阶矩阵阶矩阵第41页协方差矩阵性质:协方差矩阵性质:(1)(2),即协方差矩阵即协方差矩阵是对称是对称。(3)协方差矩阵协方差矩阵是非负定矩阵,即对任是非负定矩阵,即对任意意 n n 维实向量维实向量 t ,有有 t t(4)第42页4.4.3 n维正态分布维正态分布定义定义4.64.6:若若n维随机向量维随机向量X 联合概率密度为联合概率密度为其中其中x ,是是 n维实向量,维实向量,是是n阶正定矩阵阶正定矩阵,|表示表示行列式,则称行列式,则称X服从服从n维正态维正态分布分布,记为记为XN(,nn)。)。第43页特殊,特殊,n=2时,即时,即:其中其中第44页1 1、定义、定义:其中其中 任意任意,第45页第46页第47页7 7、Xn1N(n1,nn)充要条件是)充要条件是 lXN(l,l l)()(其中其中l为为n维常向量维常向量)(其含义是:(其含义是:X 服从多维正态分布充要条服从多维正态分布充要条件是其任一线性组合服从一维正态分布。)件是其任一线性组合服从一维正态分布。)第48页- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 随机变量 数学 期望 公共课 一等奖 全国 获奖 课件
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【天****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【天****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【天****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【天****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文