方差分析-SPSS操作流程PPT.ppt
《方差分析-SPSS操作流程PPT.ppt》由会员分享,可在线阅读,更多相关《方差分析-SPSS操作流程PPT.ppt(77页珍藏版)》请在咨信网上搜索。
1、SPSS操作方差分析 方差分析由英国统计方差分析由英国统计学家学家R.A.Fisher在在1923年提出,为纪念年提出,为纪念Fisher,以,以F命名,命名,故方差分析又称故方差分析又称 F 检检验。验。三种变异总变异:全部观察值大小各不相等,其变异就称为总变异总变异:全部观察值大小各不相等,其变异就称为总变异(total variationtotal variation)。用)。用SSSST T表示表示组间变异:由于各组处理不同所引起的变异称为组间变异组间变异:由于各组处理不同所引起的变异称为组间变异(variation between groups)variation between g
2、roups)。它反应了处理因素对不同。它反应了处理因素对不同组的影响,同时也包括了随机误差。用组的影响,同时也包括了随机误差。用SSSS组间组间表示表示组内变异:每个处理组内部的各个观察值也大小不等,与每组内变异:每个处理组内部的各个观察值也大小不等,与每组的样本均数也不相同,这种变异称为组内变异组的样本均数也不相同,这种变异称为组内变异(variation within groupsvariation within groups)。组内变异只反映随机误差)。组内变异只反映随机误差的大小,如个体差异、随机测量误差等。因此,又称为误差的大小,如个体差异、随机测量误差等。因此,又称为误差变异。用变
3、异。用SSSS组内组内表示表示方差分析中的多重比较目的:目的:如果方差分析判断总体均值间存在显著差异,接下来可通过多重如果方差分析判断总体均值间存在显著差异,接下来可通过多重比较对每个水平的均值逐对进行比较,以判断具体是哪些水平比较对每个水平的均值逐对进行比较,以判断具体是哪些水平间存在显著差异。间存在显著差异。常用方法备选:常用方法备选:LSDLSD法:法:t t检验的变形,在变异和自由度的计算上利用了整个样本信息。检验的变形,在变异和自由度的计算上利用了整个样本信息。Duncan Duncan 新复极差测验法新复极差测验法Tukey Tukey 固定极差测验法固定极差测验法DunnettD
4、unnett最小显著差数测验法最小显著差数测验法 等等实现手段:实现手段:方差分析菜单中的方差分析菜单中的“Post hoc test”按钮按钮实例-多重比较步骤一:步骤一:步骤一:步骤一:同同同同one-way one-way ANOVAANOVA步骤二:步骤二:步骤二:步骤二:选选选选“Post hoc Post hoc testtest”勾选多重比较的勾选多重比较的勾选多重比较的勾选多重比较的方法方法方法方法(如如如如LSDLSD、duncanduncan法法法法 确定显著性水平确定显著性水平确定显著性水平确定显著性水平continuecontinuePost Hoc Test方差分析的
5、思路:方差分析的思路:将全部观测值的总变异按影响结果的诸因素分将全部观测值的总变异按影响结果的诸因素分解为相应的若干部分变异,构造出反映各部分变解为相应的若干部分变异,构造出反映各部分变异作用的统计量,在此基础上,构建假设检验统异作用的统计量,在此基础上,构建假设检验统计量,以实现对总体参数的推断。计量,以实现对总体参数的推断。检验假设:检验假设:H H0 0:三个组的总体均数相同;三个组的总体均数相同;H H1 1:三个组的总体均数不全相同;三个组的总体均数不全相同;方差分析步骤方差分析步骤单因素方差分析单因素方差分析也称有一维方差分析,对二组以上的均值加以比较。检验由单一因素影响的一个(或
6、几个相互独立的)分析变量由因素各水平分组的均值之间的差异是否有统计意义。并可以进行两两组间均值的比较,称作组间均值的多重比较,还可以对该因素的若干水平分组中哪些组均值不具有显著性差异进行分析,即一致性子集检验。步骤步骤AnalyzeCompare means One-way ANOVAOne-Way过程One-Way过程:单因素简单方差分析过程。在Compare Means菜单项中,可以进行单因素方差分析(完全随机设计资料的多个样本均数比较和样本均数间的多重比较,也可进行多个处理组与一个对照组的比较)、均值多重比较和相对比较,用于。One-Way ANOVA过程要求:n因(分析)变量属于正态分
7、布总体,若因(分析)变量的分布明显的是非正态,应该用非参数分析过程。n对被观测对象的实验不是随机分组的,而是进行的重复测量形成几个彼此不独立的变量,应该用Repeated Measure菜单项,进行重复测量方差分析,条件满足时,还可以进行趋势分析。analyzecompare meansone-way ANVOA响应变量响应变量响应变量响应变量因素因素因素因素Contrasts:线性组合比较。是参数或统计量的线性函数,用于检验均数间的关系,除了比较差异外,还包括线性趋势检验Contrasts可以表达为:a1u1+a2u2+akuk=0;满足a1+a2+ak=0。式中ai为线性组合系数,ui为总
8、体均数,k为分类变量的水平数Polynomial(多项式比较):均值趋势的检验有5种多项式:Linear线性、Quadratic二次、Cubic三次、4th四次、5th五次多项式 Coefficients:为多项式指定各组均值的系数。因素变量分为几组,输入几个系数,多出的无意义。如果多项式中只包括第一组与第四组的均值的系数,必须把第二个、第三个系数输入为0值。如果只包括第一组与第二组的均值,则只需要输入前两个系数,第三、四个系数可以不输入。多项式的系数需要由根据研究的需要输入。如果进行先验对比检验,则应在Coefficients后依次输入系数ci,并确保ci0。应注意系数输入的顺序,它将分别与
9、控制变量的水平值相对应。例如,当k4时,即有A、B、C、D 4个处理组,如果只将B组和D组比较,则线性组合系数依次为0、-1、0、-1;如果C组与其他3组的平均水平比较,则线性组合系数依次为-1、-1、3、-1,余类推。线性组合系数要按照分类变量水平的顺序依次填入Coefficients框中。均值的多项式比较可以同时建立多个多项式。一个多项式的一级系数输入结束,激活Next按钮,单击该按钮后Coefficients 框中清空,准备接受下一组系数数据。如果认为输入的几组系数中有错误,可以分别单击Previous或Next按钮前后翻找出错误的一组数据。单击出错的系数,该系数显示在编辑框中,可以在此
10、进行修改,修改后击Change按钮,在系数显示框中出现正确的系数值。当在系数显示框中选中一个系数时,同时激活Remove按钮;单击该按钮将选中的系数清除。Post Hoc(均数的多重比较选项)进行多重比较是对每两个组的均值进行如下比较:MEAN(i)-MEAN(j)4.6625RANGESQRT(1/N(i)+1/N(j);其中i、j分别为组序号,MEAN(i)、MEAN(j)分别为第i、j组均值,N(i)、N(j)分别为第i、j组中的观测数。各组均值的多重比较方法的算法不同RANGE值也不同。方差相等时可选择的比较方法方差不等时可选择的比较方法与对照组的配对比较用t检验完成各组均值的配对比较
11、LSD(最小显著差异法):用 t检验完成各组均值间的配对比较。在变异和自由度的计算上利用了整个样本信息。在变异和自由度的计算上利用了整个样本信息。对多重比较误差率不进行调整;(此法最敏感)Bonferroni(修正最小显著差异法):用 t检验完成各组均值间的配对比较,但通过设置每个检验的误差率来控制整个误差;(应用较多)Sidak(斯达克法):计算t统计量进行多重配对比较,可以调整显著性水平,比Bonferroni法的界限要小Scheffe(谢弗检验法):对所有可能的组合进行同步进入的配对比较,这些选择可以同时选择若干个,以便比较各种均数比较方法的结果;R-E-G-W F(赖安艾耶盖F法):用
12、F检验进行多重比较检验,显示一致性子集表;R-E-G-W Q(赖安艾耶盖Q法):正态分布范围进行多重配对比较;显示一致性子集表;S-N-K(SNK法):用student range分布进行所有各组均值间的比较;(应用较多)Tukey(图基法):固定极差测验法,固定极差测验法,用student-range统计量进行所有组间均值的配对比较,将所有配对比较误差率作为实验误差率;Tukeys-b(图基s-b法):用student range分布进行组间均值的配对比较。其精确值为前两种检验相应值的平均值;Duncan(邓肯法):新复极差测验法,新复极差测验法,指定一系列的的Range值,逐步进行计算比较
13、得出结论;Hochbergs GT2(霍耶比GT2法):用正态最大系数进行多重比较Gabriet(盖比理法):用正态标准系数进行配对比较,在单元数较大时,这种方法较自由;Waller-Duncan(瓦尔-邓肯法):用t统计量进行多重比较检验。使用贝耶斯接近;Dunnett(邓尼特法):最小显著差数测验法,最小显著差数测验法,进行各组与对照组的均值,默认的对照组是最后一组;选定此方法后,激活下面的Control Catetory参数框,展开小菜单,选择对照组Tamhanes T2(塔海尼T2法):t检验进行配对比较;Dunnetts T3(邓尼特T3法):正态分布下的配对比较;Games-How
14、ell(盖门-霍威尔法):各组均值的配对比较,该方法较灵活;DunnettC(邓尼特C法):正态分布下的配对比较。常用的多重比较方法的适用性常用的多重比较方法的适用性LSD(Least significant Difference)LSD(Least significant Difference):存在明确对:存在明确对照组,进行验证性研究;两均数间的比较是独立的照组,进行验证性研究;两均数间的比较是独立的T(Tukey)T(Tukey)方法:如果事先未计划未计划多重比较,在方法:如果事先未计划未计划多重比较,在方差分析得到由统计学意义的方差分析得到由统计学意义的F F值之后,有需要进行值之后
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 方差分析 SPSS 操作 流程 PPT
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【a199****6536】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【a199****6536】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。