三角形的外角练习题及标准答案.doc
《三角形的外角练习题及标准答案.doc》由会员分享,可在线阅读,更多相关《三角形的外角练习题及标准答案.doc(6页珍藏版)》请在咨信网上搜索。
7.2.2 三角形的外角 基础过关作业 1.若三角形的外角中有一个是锐角,则这个三角形是________三角形. 2.△ABC中,若∠C-∠B=∠A,则△ABC的外角中最小的角是______(填“锐角”、“直角”或“钝角”). 3.如图1,x=______. (1) (2) (3) 4.如图2,△ABC中,点D在BC的延长线上,点F是AB边上一点,延长CA到E,连EF,则∠1,∠2,∠3的大小关系是_________. 5.如图3,在△ABC中,AE是角平分线,且∠B=52°,∠C=78°,求∠AEB的度数. 6.如图,在△ABC中,∠A=60°,BD、CE分别是AC、AB上的高,H是BD、CE的交点,求∠BHC的度数. 综合创新作业 7.如图所示,在△ABC中,AB=AC,AD=AE,∠BAD=60°,则∠EDC=______. 8.一个零件的形状如图7-2-2-6所示,按规定∠A应等于90°,∠B、∠D应分别是30°和20°,李叔叔量得∠BCD=142°,就断定这个零件不合格,你能说出道理吗? 9.(1)如图7-2-2-7(1),求出∠A+∠B+∠C+∠D+∠E+∠F的度数; (2)如图7-2-2-7(2),求出∠A+∠B+∠C+∠D+∠E+∠F的度数. 10.(易错题)三角形的三个外角中最多有_______个锐角. 培优作业 11.(探究题)(1)如图,BD、CD分别是△ABC的两个外角∠CBE、∠BCF的平分线,试探索∠BDC与∠A之间的数量关系. (2)如图,BD为△ABC的角平分线,CD为△ABC的外角∠ACE的平分线,它们相交于点D,试探索∠BDC与∠A之间的数量关系. 12.(趣味题)如图,在绿茵场上,足球队员带球进攻,总是向球门AB冲近,说明这是为什么? 数学世界 七桥问题 18世纪在哥尼斯堡城的普莱格尔河上有七座桥,将河中的两个岛和河岸连接.如图所示.城中的居民经常沿河过桥散步,于是就提出一个问题:能否一次不重复地把这七座桥走遍?可是,走来走去,这个愿望还是无法实现.该怎样走才好呢?这就是著名的哥尼斯堡七桥问题.好奇的人把这个问题拿给当时的大数学家欧拉(1707~1783).欧拉以深邃的洞察力很快证明了这样的走法不存在. 你知道欧拉是根据什么道理证明的吗? 答案: 1.钝角 2.直角 点拨:∵∠C-∠B=∠A,∴∠C=∠A+∠B. 又∵(∠A+∠B)+∠C=180°,∴∠C+∠C=180°,∴∠C=90°, ∴△ABC的外角中最小的角是直角. 3.60 点拨:由题意知x+80=x+(x+20).解得x=60. 4.∠1>∠2>∠3 点拨:∵∠1是∠2的外角,∠2是∠3的外角,∴∠1>∠2>∠3. 5.解:∠BAC=180°-(∠B+∠C)=180°-(52°+78°)=50°. ∵AE是∠BAC的平分线, ∴∠BAE=∠CAE=∠BAC=25°. ∴∠AEB=∠CAE+∠C=25°+78°=103°. 6.解:在△ACE中,∠ACE=90°-∠A=90°-60°=30°. 而∠BHC是△HDC的外角, 所以∠BHC=∠HDC+∠ACE=90°+30°=120°. 7.30° 点拨:设∠CAD=2a,由AB=AC知∠B=(180°-60°-2a)=60°-a, ∠ADB=180°-∠B-60°=60°+a,由AD=AE知,∠ADE=90°-a, 所以∠EDC=180°-∠ADE-∠ADB=30°. 8.解法1:如答图1,延长BC交AD于点E, 则∠DEB=∠A+∠B=90°+30°=120°, 从而∠DCB=∠DEB+∠D=120°+20°=140°. 若零件合格,∠DCB应等于140°. 李叔叔量得∠BCD=142°, 因此可以断定该零件不合格. (1) (2) (3) 点拨:也可以延长DC与AB交于一点,方法与此相同. 解法2:如答图2,连接AC并延长至E,则∠3=∠1+∠D,∠4=∠2+∠B, 因此∠DCB=∠1+∠D+∠2+∠B=140°.以下同方法1. 解法3:如答图3,过点C作EF∥AB,交AD于E, 则∠DEC=90°,∠FCB=∠B=30°,所以∠DCF=∠D+∠DEC=110°, 从而∠DCB=∠DCF+∠FCB=140°.以下同方法1. 说明:也可以过点C作AD的平行线. 点拨:上述三种解法应用了三角形外角的性质:三角形的一个外角等于它不相邻的两个内角的和. 9.解:(1)由图知∠A+∠F=∠OQA,∠B+∠C=∠QPC,∠D+∠E=∠EOP. 而∠OQA、∠QPC、∠EOP是△OPQ的三个外角. ∴∠OQA+∠QPC+∠EOP=360°. ∴∠A+∠B+∠C+∠D+∠E+∠F=∠OQA+∠QPC+∠EOP=360°. (2)360° 点拨:方法同(1). 10.1 点拨:本题易因混淆内角、外角的概念,而误填为3. 11.解:(1)∠BDC=90°-∠A. 理由:∠ABC+∠ACB=180°-∠A. ∠EBC+∠FCB=(180°-∠ABC)+(180°-∠ACB)=360°-(∠ABC+∠ACB)=180°+∠A. ∵BD、CD分别为∠EBC、∠FCB的平分线, ∴∠CBD=∠EBC,∠BCD=∠FCB. ∴∠CBD+∠BCD=(∠EBC+∠FCB)=×(180°+∠A) =90°+∠A. 在△BDC中,∠BDC=180°-(∠CBD+∠BCD)=180°-(90°+∠A)=90°-∠A. (2)∠BDC=∠A. 理由:∵∠ACE是△ABC的外角, ∴∠ACE=∠A+∠ABC, ∵CD是∠ACE的平分线,BD是∠ABC的平分线, ∴∠DCE=∠ACE=∠A+∠ABC,∠DBC=∠ABC. ∵∠DCE是△BCD的外角, ∴∠BDC=∠DCE-∠DBC=∠A+∠ABC-∠ABC=∠A. 12.解:如图,设球员接球时位于点C,他尽力向球门冲近到D, 此时不仅距离球门近,射门更有力,而且对球门AB的张角也扩大,球就更容易射中. 理由说明如下: 延长CD到E,则∠ADE>∠ACE,∠BDE>∠BCE, ∴∠ADE+∠BDE>∠ACE+∠BCE,即∠ADB>∠ACB. 点拨:解此题关键是将生活中的问题抽象为数学问题. 数学世界答案: 欧拉将七桥布局转化为图所示的简单图形,于是七桥问题就变成一个一笔画的问题.这个图形显然无法一笔画出,也就是说,要想一次无重复地走遍这七座桥是办不到的.- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 三角形 外角 练习题 标准答案 编辑 修改 word
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【丰****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【丰****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【丰****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【丰****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文