平行四边形动点及存在性问题.doc
《平行四边形动点及存在性问题.doc》由会员分享,可在线阅读,更多相关《平行四边形动点及存在性问题.doc(12页珍藏版)》请在咨信网上搜索。
环球雅思学科教师辅导讲义 组长签字: 学员编号: 年 级:八年级 课时数:3 学员姓名: 辅导科目: 数学 学科教师: 赵文娜 授课日期及时段 教学目标 重点难点 教学内容 平行四边形动点及存在性问题 【例1】正方形ABCD的边长为8,M在DC上,且DM=2,N是AC上的一动点,DN+MN的最小值为 。 【练习1】如图,在平面直角坐标系中,矩形OACB的顶点O在坐标原点,顶点A、B分别在x轴、y轴的正半轴上,OA=3,OB=4,D为边OB的中点. (1)若E为边OA上的一个动点,当△CDE的周长最小时,求点E的坐标; (2)若E、F为边OA上的两个动点,且EF=2,当四边形CDEF的周长最小时,求点E、F的坐标. 【例3】 如图,在平面直角坐标系中,矩形OABC的顶点A、C的坐标分别为(10,0),(0,4),点D是OA的中点,点P在BC上运动,当三角形△ODP是腰长为5的等腰三角形时,P的坐标为 ; 【练习2】如图,在平面直角坐标系中,AB∥OC,A(0,12),B(a,c),C(b,0),并且a,b满足.一动点P从点A出发,在线段AB上以每秒2个单位长度的速度向点B运动;动点Q从点O出发在线段OC上以每秒1个单位长度的速度向点C运动,点P、Q分别从点A、O同时出发,当点P运动到点B时,点Q随之停止运动.设运动时间为t(秒) (1)求B、C两点的坐标; (2)当t为何值时,四边形PQCB是平行四边形?并求出此时P、Q两点的坐标; (3)当t为何值时,△PQC是以PQ为腰的等腰三角形?并求出P、Q两点的坐标. 【例4】(1)如图,矩形ONEF的对角线相交于点M,ON、OF分别在x轴和y轴上,O为坐标原点,点E的坐标为(4,3),则点M的坐标为 ; (2)在直角坐标系中,有A(-1,2),B(3,1),C(1,4)三点,另有一点D与点A、B、C构成平行四边形的顶点,求点D的坐标. 【练习3】如图,四边形ABCD为矩形,C点在x轴上,A点在y轴上,D点坐标是(0,0),B点坐标是(3,4),矩形ABCD沿直线EF折叠,点A落在BC边上的G处,E、F分别在AD、AB上,且F点的坐标是(2,4). (1)求G点坐标; (2)求直线EF解析式; (3)点N在x轴上,直线EF上是否存在点M,使以M、N、F、G为顶点的四边形是平行四边形?若存在,请直接写出M点的坐标;若不存在,请说明理由. 【例5】在Rt△ABC中,∠B=90°,AC=60cm,∠A=60°,点D从点C出发沿CA方向以4cm/s的速度向点A匀速运动,同时点E从点A出发沿AB方向以2cm/s的速度运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D,E运动的时间是ts(0<t15).过点D作DF⊥BC于点F,连接DE,EF. (1)求证:AE=DF; (2)四边形AEFD能够成为菱形吗?如果能,求出相应的t值;如果不能,请说明理由; (3)当t为何值时,△DEF为直角三角形?请说明理由. 【练习4】如图,等腰三角形OAB的一边OB在x轴的正半轴上,点A的坐标为(6,8),OA=OB,动点P从原点O出发,在线段OB上以每秒2个单位的速度向点B匀速运动,动点Q从原点O出发,沿y轴的正半轴以每秒1个单位的速度向上匀速运动,过点Q作x轴的平行线分别交OA,AB于E,F,设动点P,Q同时出发,当点P到达点B时,点Q也停止运动,他们运动时间为t秒() (1)点E的坐标为 ,F的坐标为 ; (2)当t为何值时,四边形POFE是平行四边形; (3)是否存在某一时刻,使△PEF为直角三角形?若存在,请求出此时t的值;若不存在,请说明理由. 【巩固练习】 1、菱形ABCD中,AB=2, ∠BAD=60°,点E是AB的中点,P是对角线AC上的一个动点,则PE+PB的最小值为 。 第1题图 第2题图 第3题图 第4题图 2、如图,在Rt△ABC中,∠ACB=90°,∠A=30°,AC=,BC的中点为D,将△ABC绕点C顺时针旋转任意一个角度得到△FEC,EF的中点为G,连接DG,在旋转过程中,DG的最大值是_________;最小值是__________. 3、已知△ABC是等腰直角三角形,∠BAC=90°,点D是BC的中点.作正方形DEFG,连接AE,BG,若BC=DE=4,将正方形DEFG绕点D旋转,当AE取最小值时,AF= . 4、在三角形纸片ABC中,已知∠ABC=90°,AB=6,BC=8。过点A作直线平行于BC,折叠三角形纸片ABC,使直角顶点B落在直线上的T处,折痕为MN.当点T在直线上移动时,折痕的端点M、N也随之移动.若限定端点M、N分别在AB、BC边上移动,则线段AT长度的最大值与最小值之和为____. 5、如图,在梯形ABCD中,AD∥BC,∠B=90°,AD=16cm,AB=12cm,BC=21cm,动点P从点B出发,沿射线BC的方向以每秒2cm的速度运动到C点返回,动点Q从点A出发,在线段AD上以每秒1cm的速度向点D运动,点P,Q分别从点B,A同时出发,当点Q运动到点D时,点P随之停止运动,设运动的时间为t(秒). (1)当t为何值时,四边形PQDC是平行四边形; (2)当t为何值时,以C,D,Q,P为顶点的梯形面积等于60cm²? (3)是否存在点P,使△PQD是等腰三角形?若存在,请求出所有满足要求的t的值;若不存在,请说明理由. 6、如图,在平面直角坐标系中,点A、B分别在x轴、y轴上,线段OA、OB的长(0A<OB) 是方程组的解,点C是直线与直线AB的交点,点D在线段OC上,OD=。 (1)求直线AB的解析式及点C的坐标; (2)求直线AD的解析式; (3)P是直线AD上的点,在平面内是否存在点Q,使以0、A、P、Q为顶点的四边形是菱形?若存在,请直接写出点Q的坐标;若不存在,请说明理由. 动点问题题型 图D-01 ⒈如图D-01,四边形ABCD中,AD∥CB,且AD>BD,BC=6cm,动点P、Q分别从A、C同时出发,P以1cm/s的速度由A向D运动,Q以2cm/s的速度由C向B运动,几秒后四边形ABQP是平行四边形? ⒉如图D-02,在ABC中,点O是AC边上一动点,过O作直线MN∥BC,设MN交∠ACB的平分线于E,交∠ACB的外角平分线于F, ①求证:OE=OF ②当点O运动到何处时,四边形AECF是矩形?证明你的结论 〖提示〗 易证∠1=∠2=∠3,得OE=OC 同理OF=OC,得证OE=OF ⒊如图D-03,矩形ABCD中,AB=12cm,BC=6cm,点P沿AB边从点A向B以2cm/s的速度移动;点Q沿DA边从点D向A以1cm/s的速度移动;如果P、Q同时出发,t(s)表示移动时间(0<t<6),那么: ① 当t为何值时,QAP为等腰直角三角形? ② 求四边形QAPC的面积,并提出一个与计算结果有关的结论 图D-03 4.如图,在菱形ABCD中,AB=2,∠DAB=60°,点E是AD边的中点.点M是AB边上一动点(不与点A重合),延长ME交射线CD于点N,连接MD、AN. (1)求证:四边形AMDN是平行四边形; (2)填空: ①当AM的值为______时,四边形AMDN是矩形; ②当AM的值为______时,四边形AMDN是菱形. 5.如图,△ABC中,点O是边AC上一个动点,过O作直线MN∥BC,设MN交∠BCA的平分线于点E,交∠BCA的外角平分线于点F. (1)探究:线段OE与OF的数量关系并加以证明; (2)当点O运动到何处,且△ABC满足什么条件时,四边形AECF是正方形? (3)当点O在边AC上运动时,四边形BCFE会是菱形吗?若是,请证明,若不是,则说明理由. 6. 如图,已知菱形ABCD中,∠ABC=60°,AB=8,过线段BD上的一个动点P(不与B、D重合)分别向直线AB、AD作垂线,垂足分别为E、F. (1)BD的长是______; (2)连接PC,当PE+PF+PC取得最小值时,此时PB的长是______. 7.如图,矩形ABCD中,点P是线段AD上一动点,O为BD的中点,PO的延长线交BC于Q。 (1)求证:OP=OQ; (2)若AD=8厘米,AB=6厘米,P从点A出发,以1厘米/秒的速度向D运动(不与D重合)。设点P运动时间为t秒,请用t表示PD的长;并求t为何值时,四边形PBQD是菱形。 8.如图,已知矩形ABCD,AD=4,CD=10,P是AB上一动点,M、N、E分别是PD、PC、CD的中点. (1)求证:四边形PMEN是平行四边形; (2)请直接写出当AP为何值时,四边形PMEN是菱形; (3)四边形PMEN有可能是矩形吗?若有可能,求出AP的长;若不可能,请说明理由. 9. 已知:如图,在□ABCD 中,E、F分别为边AB、CD的中点,BD是对角线,AG∥DB交CB的延长线于G。(1)求证:△ADE≌△CBF; (2)若四边形BEDF是菱形,则四边形AGBD是什么特殊四边形?并证明你的结论。 10.如图,在平行四边形ABCD中,对角线BD=12cm,AC=16cm,AC,BD相交于点O,若E,F是AC上两动点,分别从A,C两点以相同的速度向C、A运动,其速度为0.5cm/s。 (1) 当E与F不重合时,四边形DEBF是平行四边形吗?说明理由; (2)点 E,F在AC上运动过程中,以D、E、B、F为顶点的四边形是否可能为矩形?如能,求出此时的运动时间t的值,如不能,请说明理由。 11. 如图,平行四边形ABCD中,AB⊥AC,AB=1,BC=,对角线AC,BD相交于点O,将直线AC绕点O顺时针旋转,分别交BC,AD于点E,F . (1)证明:当旋转角为90°时,四边形ABEF是平行四边形; (2)试说明在旋转过程中,线段AF与EC总保持相等; (3)在旋转过程中,四边形BEDF可能是菱形吗?如果不能,请说明理由;如果能,说明理由并求出此时AC绕点O顺时针旋转的度数. 12.如图,在△ABC中,∠ACB=90°,BC的垂直平分线DE交BC于D,交AB于E,F在DE上,且AF=CE=AE. (1)说明四边形ACEF是平行四边形; (2)当∠B满足什么条件时,四边形ACEF是菱形,并说明理由。 13.如图,在菱形ABCD中,P是AB上的一个动点(不与A、B重合),连接DP交对角线AC于E连接BE. (1)证明:∠APD=∠CBE; (2)若∠DAB=60°,试问P点运动到什么位置时,△ADP的面积等于菱形ABCD面积的为什么? 14.在边长为6的菱形ABCD中,动点M从点A出发,沿A⇒B⇒C向终点C运动,连接DM交AC于点N.(1)如图1,当点M在AB边上时,连接BN:①求证:△ABN≌△ADN;②若∠ABC=60°,AM=4,∠ABN=α,求点M到AD的距离 (2)如图2,若∠ABC=90°,记点M运动所经过的路程为x(6≤x≤12).试问:x为何值时,△ADN为等腰三角形.- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 平行四边形 存在 问题
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【天****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【天****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【天****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【天****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文