一次函数练习题及答案(较难实用).doc
《一次函数练习题及答案(较难实用).doc》由会员分享,可在线阅读,更多相关《一次函数练习题及答案(较难实用).doc(8页珍藏版)》请在咨信网上搜索。
初二一次函数与几何题(附答案) 1、 平面直角坐标系中,点A的坐标为(4,0),点P在直线y=-x-m上,且AP=OP=4,则m的值是多少? 2、如图,已知点A的坐标为(1,0),点B在直线y=-x上运动,当线段AB最短时,试求点B的坐标。 A B C O x y 3、如图,在直角坐标系中,矩形OABC的顶点B的坐标为(15,6),直线y=1/3x+b恰好将矩形OABC分为面积相等的两部分,试求b的值。 x y A B O 4、如图,在平面直角坐标系中,直线y= 2x —6与x轴、y轴分别相交于点A、B,点C在x轴上,若△ABC是等腰三角形,试求点C的坐标。 5、在平面直角坐标系中,已知A(1,4)、B(3,1),P是坐标轴上一点,(1)当P的坐标为多少时,AP+BP取最小值,最小值为多少? 当P的坐标为多少时,AP-BP取最大值,最大值为多少? 6、如图,已知一次函数图像交正比例函数图像于第二象限的A点,交x轴于点B(-6,0),△AOB的面积为15,且AB=AO,求正比例函数和一次函数的解析式。 7、已知一次函数的图象经过点(2,20),它与两坐标轴所围成的三角形的面积等于1,求这个一次函数的表达式。 8、已经正比例函数Y=k1x的图像与一次函数y=k2x-9的图像相交于点P(3,-6) 求k1,k2的值 如果一次函数y=k2x-9的图象与x轴交于点A 求点A坐标 9、正方形ABCD的边长是4,将此正方形置于平面直角坐标系中,使AB在x轴负半轴上,A点的坐标是(-1,0), (1)经过点C的直线y=-4x-16与x轴交于点E,求四边形AECD的面积; (2)若直线L经过点E且将正方形ABCD分成面积相等的两部分,求直线L的解析式。 10、在平面直角坐标系中,一次函数y=Kx+b(b小于0)的图像分别与x轴、y轴和直线x=4交于A、B、C,直线x=4与x轴交于点D,四边形OBCD的面积为10,若A的横坐标为-1/2,求此一次函数的关系式 11、在平面直角坐标系中,一个一次函数的图像过点B(-3,4),与y轴交于点A,且OA=OB:求这个一次函数解析式 12、如图,A、B分别是x轴上位于原点左右两侧的点,点P(2,m)在第一象限,直线PA交y轴于点C(0,2),直线PB交y轴于点D,SAOP=6. 求:(1)△COP的面积 (2)求点A的坐标及m的值; (3)若SBOP =SDOP ,求直线BD的解析式 13、一次函数y=-x+1的图像与x轴、y轴分别交于点A、B,以AB为边在第一象限内做等边△ABC (1)求△ABC的面积和点C的坐标; (2)如果在第二象限内有一点P(a,),试用含a的代数式表示四边形ABPO的面积。 (3)在x轴上是否存在点M,使△MAB为等腰三角形?若存在,请直接写出点M的坐标;若不存在,请说明理由。 14、已知正比例函数y=k1x和一次函数y=k2x+b的图像如图,它们的交点A(-3,4),且OB=OA。 (1)求正比例函数和一次函数的解析式; (2)求△AOB的面积和周长; (3)在平面直角坐标系中是否存在点P,使P、O、A、B成为直角梯形的四个顶点?若存在,请直接写出P点的坐标;若不存在,请说明理由。 15、如图,已知一次函数y=x+2的图像与x轴交于点A,与y轴交于点C, (1)求∠CAO的度数; (2)若将直线y=x+2沿x轴向左平移两个单位,试求出平移后的直线的解析式; (3)若正比例函数y=kx (k≠0)的图像与y=x+2得图像交于点B,且∠ABO=30°,求:AB的长及点B的坐标 。 16、一次函数y=x+2的图像与x轴、y轴分别交于点A、B,以AB为边在第二象限内做等边△ABC (1)求C点的坐标; (2)在第二象限内有一点M(m,1),使S△ABM =S△ABC ,求M点的坐标; (3)点C(2,0)在直线AB上是否存在一点P,使△ACP为等腰三角形?若存在,求P点的坐标;若不存在,说明理由。 17、已知正比例函数y=k1x和一次函数y=k2x+b的图像相交于点A(8,6),一次函数与x轴相交于B,且OB=0.6OA,求这两个函数的解析式 18、已知一次函数y=x+2的图像经过点A(2,m)。与x轴交于点c,求角AOC. 19、已知函数y=kx+b的图像经过点A(4,3)且与一次函数y=x+1的图像平行,点B(2,m)在一次函数y=kx+b的图像上 (1)求此一次函数的表达式和m的值? (2)若在x轴上有一动点P(x,0),到定点A(4,3)、B(2,m)的距离分别为PA和PB,当点P的横坐标为多少时,PA+PB的值最小? 答案 3、点到线的最短距离是点向该线做垂线 因为直线与x夹角45度 所以ABO为等腰直角三角形 AB=BO=2分之根号2倍的AO AO=1 BO=2分之根号2 在B分别向xy做垂线 垂线与轴交点就是B的坐标 由于做完还是等腰直角三角形 所以议案用上面的共识 可知B点坐标是(0.5,-0.5) 7、一次函数 的解析式为y=8x+4或y=(25/2)x-5.设一次函数为y=kx+b,则它与两坐标轴的交点是(-b/k,0)(0,b),所以有20=2x+b,|-b/k×b|×1/2=1,解之得k1=8,b1=4;k2=25/2,b2=-5.所以,一次函数 的解析式为y=8x+4或y=(25/2)x-5 8、因为正比例函数和一次函数都经过(3,-6) 所以这点在两函数图像上 所以, 当x=3 y=-6 分别代入 得 k1= -2 k2=1 若一次函数图像与x轴交于点A 说明A的纵坐标为0 把y=0代入到y=x-9中得 x=9 所以A(9,0) 例4、A的横坐标=-1/2,纵坐标=0 0=-k/2+b,k=2b C点横坐标=4,纵坐标y=4k+b=9b B点横坐标=0,纵坐标y=b Sobcd=(\9b\+\b\)*4/2=10 10\b\=5 \b\=1/2 b=1/2,k=2b=1 y=x+1/2 b=-1/2,k=-1 y=-x-1/2 \b\表示b的绝对值 11、?解:设这个一次函数解析式为y=kx+b ∵y=kx+b经过点B(-3,4),与y轴交与点A,且OA=OB ∴{-3k+b=4 {3k+b=0 ∴{k=-2/3 {b=2 ∴这个函数解析式为y=-2/3x+2 ?解2根据勾股定理求出OA=OB=5, 所以,分为两种情况: 当A(0,5)时,将B(-3,4)代入y=kx+b中,y=x/3+5, 当A(0,-5),将B(-3,4)代入y=kx+b中y=3x+5, 12、做辅助线PF,垂直y轴于点F。做辅助线PE垂直x轴于点E。 (1)求S三角形COP 解:S三角形COP = 1/2 * OC * PF = 1/2 * 2 * 2 = 2 (2)求点A的坐标及P的值 解:可证明三角形CFP全等于三角形COA,于是有 PF/OA = FC/OC.代入PF=2和OC=2,于是有FC * OA = 4.(1式) 又因为S三角形AOP=6,根据三角形面积公式有S = 1/2 * AO * PE = 6,于是得到AO * PE = 12.(2式) 其中PE = OC + FC = 2 + FC,所以(2)式等于AO * (2 + FC) = 12.(3式) 通过(1)式和(3)式组成的方程组就解,可以得到AO = 4, FC = 1. p = FC + OC = 1 + 2 = 3. 所以得到A点的坐标为(-4, 0), P点坐标为(2, 3), p值为3. (3)若S三角形BOP=S三角形DOP,求直线BD的解析式 解:因为S三角形BOP=S三角形DOP,就有(1/2)*OB*PE = (1/2)*PF*OD,即 (1/2)*(OE+BE)*PE = (1/2)*PF*(OF+FD),将上面求得的值代入有 (1/2)*(2+BE)*3 = (1/2)*2*(3+FD)即 3BE = 2FD。 又因为:FD:DO = PF:OB 即 FD:(3+FD) = 2:(2+BE),可知BE=2.B坐标为(4,0) 将BE=2代入上式3BE=2FD,可得FD = 3. D坐标为(0,6) 因此可以得到直线BD的解析式为: y = (-3/2)x + 6 17、正比例函数y=k1x和一次函数y=k2x+b的图像相交于点A(8,6),所以有 8K1=6....... (1) 8K2+b=6 ....... (2) 又OA=10 所以OB=6 即B点坐标(6,0) 所以6K2+b=0 ....... (3) 解(1)(2)(3)得K1=3/4 K2=3 b=-18 OA=√(8^2+6^2)=10,OB=6,B(6,0),k1=6/8=0.75 正比例函数y=0.75x,一次函数y=3x-18 18、一次函数y=x+2的图像经过点a(2,m),有 m=2+2=4, 与x轴交于点c,当y=0时,x=-2. 三角形aoc的面积是:1/2*|oc|m|=1/2*|-2|*|4|=4平方单位. 19、解:两直线平行,斜率相等 故k=1,即直线方程为y=x+b经过点(4,3) 代入有: b=-1 故一次函数的表达式为:y=x-1 经过点(2,m)代入有: m=1 2)A(4,3),B(2,1)要使得PA+PB最小,则P,A,B在一直线上 AB的直线方程为: (y-1)/(3-1)=(x-2)/(4-2)过点(x,0)代入有: (0-1)/2=(x-2)/2 x=1 即当点P的横坐标为1时,PA+PB的值最小. 8- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 一次 函数 练习题 答案 实用 编辑 修改 word
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【丰****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【丰****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【丰****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【丰****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文