线性代数总结归纳.doc
《线性代数总结归纳.doc》由会员分享,可在线阅读,更多相关《线性代数总结归纳.doc(28页珍藏版)》请在咨信网上搜索。
1、行列式1 为何要学习线性代数?学习线性代数的重要性和意义。答:线性代数是理、工、医各专业的基础课程,它是初等代数理论的继续和发展,它的理论和方法在各个学科中得到了广泛的应用.2 线性代数的前导课程。答:初等代数。3 线性代数的后继课程。答:高等代数,线性规划,运筹学,经济学等。4 如何学习线性代数?答:掌握各章节的基本概念和解决问题的基本方法,多多体会例子的方法和技巧,多做练习,在练习中要紧扣问题涉及的概念,不要随意扩大概念的范围,练习要自己做才能理解所学的知识。在学完一章后自己要做一个小结,理清该章内容及前后概念之间的联系。在学完本课程后,将各章的内容做一个总结,想想各章内容之间的联系,易混
2、淆的概念要着重加深理解及区分它们之间的差异。第一章 行列式5 什么是一个n阶全排列?【知识点】:n阶全排列。答:由n个数1,2, ,n 组成的一个有序数组。6 什么是标准排列?【知识点】:n阶全排列.答:按数字由小到大的自然顺序排列的n阶排列123n。7 什么是n阶全排列的逆序?【知识点】:n阶全排列的逆序.答:在一个n阶排列中,若某个较大的数排在某个较小的数前面,则称这两个数构成一个逆序。例如:排列45312中,数4与3,数4与1,数4与2,数5与3,数5与1,数5与2,数3与1,数3与2都构成逆序.数4与5,数1与2不构成逆序.8 什么是n阶排列的逆序数?【知识点】:n阶排列的逆序数.答:
3、在一个n阶排列中,所有逆序的总数就是排列的逆序数。例如:上问中的排列45312的逆序数为8.9 什么是奇排列和偶排列?【知识点】:排列的奇偶性。答:逆序数为奇数的排列叫奇排列;逆序数为偶数的排列叫偶排列.例如:排列45312为偶排列。10 对换一个排列中的任意两个数,该排列的奇偶性有什么变化?【知识点】:排列的对换对排列的奇偶性的影响.答:对换一个排列中的任意两个数,奇排列就变成偶排列,偶排列就变成奇排列.例如:偶排列45312对换4与3,则变成排列35412,它的逆序数为7,排列35412是奇排列。11 任一个n阶排列与标准排列可以互变吗?【知识点】:n阶排列与标准排列的关系。答:可经过一系
4、列对换互变。且所做对换的次数与排列具有相同的奇偶性。例如:排列32541的逆序数是6,因而是偶排列,它经过2次对换:3与1对换后变为12543,再对换5与3就变为标准排列12345。对换的次数2与逆序数6都是偶数,但要注意对换的次数与逆序数一般不相等。12 n阶行列式中的元素的两个下标表示什么?【知识点】:n阶行列式的元素。答:第一个下标表示元素所在的行数,第二个下标表示元素所在的列数.例如:a23表示该元素位于行列式的第2行第3列的位置。13 n阶行列式展开式中共有多少项?每一项有什么特点?【知识点】:n阶行列式的定义。答:共有n! 项,每一项由不同行不同列的n个元素的乘积构成。例如:3阶行
5、列式共有3!=6项,每一项由不同行不同列的3个元素的乘积构成。14 n阶行列式展开式中每一项前的符号如何确定?【知识点】:n阶行列式的定义.答:当n个元素的乘积的第一个下标按标准排列排列时,该项的符号为(-1)的列标排列的逆序数次方。例如:4阶行列式中的项a14a23a32a41的符号为(-1)(4321)= +1.15 1阶行列式等于多少?【知识点】:1阶行列式的特点.答:1阶行列式a|=a。但不要与绝对值混淆.16 2,3阶行列式的对角线算法怎样进行?【知识点】:2,3阶行列式的的定义及特殊性。答:从左上角到右下角的元素的乘积的项前取正号,从右上角到左下角的元素的乘积的项前取负号。17 对
6、角线算法能用于4阶以上的行列式吗?【知识点】:行列式的对角线算法的局限性.答:不能,因为按对角线算法展开阶行列式只有2n项,而阶行列式的展开式中应有n!项,另外各项前的符号也不能用对角线算法的方法来定.例如:4阶行列式中的项a14a23a32a41的符号应为+,按对角线算法的方法它的符号为“”.18 上(下)三角行列式怎样计算?三角行列式的算法.答:主对角线上的所有元素的乘积。例如: 19 什么是转置行列式?与原行列式有什么关系?这说明行列式的什么性质?【知识点】:行列式的的对称性.答:依次将行列式的行写成列后得到的行列式叫转置行列式。转置行列式与原行列式相等。这说明行列式的行与列的对称性.例
7、如:行列式 的转置行列式 。它们是相等的。20 交换行列式的任意两行(列),行列式有什么变化?【知识点】:行列式的基本性质。答:行列式要变号。例如: 21 用一个数k乘行列式,行列式中的元素有什么变化?【知识点】:行列式的基本性质.答:相当于在行列式的某行(或列)的每个元素上都乘以数k。例如: ,则 22 如果行列式中有两行(列)元素相等,则行列式等于多少?【知识点】:行列式的基本性质。答:行列式等于0。例如: 23 行列式中某一行(列)所有元素的公因子是否可以提到行列式符号的外面?【知识点】:行列式的基本性质。答:可以。例如: 24 若行列式中有某一行(列)的元素全是零,则行列式等于多少?【
8、知识点】:行列式的基本性质。答:应用23问的答,得行列式等于0.25 若行列式中有两行(列)元素对应成比例,则行列式等于多少?【知识点】:行列式的基本性质。答:应用22问与23问的答,得行列式等于0。26 将一个行列式拆成两个行列式的和时应注意什么问题?【知识点】:行列式拆成两个行列式的和。答:只能将某行(或列)的元素拆开,而其它行(或列)的元素不变.例如: 27 把行列式的某一行(列)元素乘以同一数k后加到另一行对应元素上,行列式有什么变化?【知识点】:行列式的基本性质。答:行列式不变。例如: 的第2行乘3加到第1行后的行列式 与原行列式相等。28 行列式的k阶子式是什么含义?【知识点】:行
9、列式的k阶子式。答:行列式的k阶子式由某k行和某k列交叉的k2个元素按原来的顺序排成的k阶行列式。例如:的由第1、3行与第2、3列得到的一个2阶子式为29 式的余子式是什么含义?【知识点】:行列式的子式的余子式。答:把子式所在的行和列去掉后剩下的元素构成的行列式.例如: 的由第1、3行与第2、3列得到的子式的余子式为划去第1、3行与第2、3列剩下的行列式 。30 子式的代数余子式是什么含义?【知识点】:行列式的子式的代数余子式。答:子式的代数余子式是在子式的余子式前添上符号 ,其中 为子式所在的行和列。例如: 的子式 的代数余子式是31 行列式D的元素aij的余子式和代数余子式是什么含义?【知
10、识点】:行列式的元素的余子式和代数余子式的概念。答:元素aij的余子式是去掉元素aij所在的第i行和第j列后剩下的元素所构成的行列式。元素aij的代数余子式是在元素aij的余子式前添上符号 后的式子。例如: 的元素a23=7的余子式是去掉元素所在的第2行和第3列后剩下的元素所构成的行列式 ,a23=7的代数余子式是 。32 n阶行列式的任一个k阶子式与它的代数余子式的乘积中的每一项与行列式中的项有什么关系?【知识点】:子式与它的代数余子式的乘积与行列式中的项的关系。答:n阶行列式的任一个k阶子式与它的代数余子式的乘积中的每一项都是行列式中的一项,而且符号一致.33 行列式按k行展开如何展开?【
11、知识点】:行列式展开的拉普拉斯定理。答:在行列式中任取k行,由这k行元素组成的所有的k阶子式与它们的代数余子式的乘积之和等于行列式。34 行列式按一行(列)展开如何展开?【知识点】:行列式按一行(列)展开的公式。答:行列式等于它的任意一行(列)的所有元素与它们的代数余子式的乘积之和。35 行列式的某一行(列)的所有元素与另一行(列)的对应元素的代数余子式的乘积之和等于多少?【知识点】:行列式的重要性质。答:等于0。36 范德蒙行列式有什么特点?怎么计算?【知识点】:范德蒙行列式。答:范德蒙行列式第一行全为1,第三行以后依次是第二行的元素2,3,,n1次幂. 范德蒙行列式等于第二行的后一列元素与
12、前各列元素的所有差的乘积.即 37 克拉默法则能解决什么样的线性方程组的问题?【知识点】:克拉默法则。答:方程的个数与未知量的个数相等的线性方程组,且方程组的系数行列式要求不为零。38 克拉默法则中,方程组的解的公式是怎样计算的?【知识点】:克拉默法则。答:第i个未知量的解等于Di/D,其中Di是系数行列式D中的第i列换成自由项所得到的行列式。39 行列式的计算有哪些常用的方法?【知识点】:行列式的计算方法。答:利用行列式的性质将行列式化为上(或下)三角行列式;利用行列式的性质将行列式的某一行(或列)变成只有一个元素非零,再按该行(或列)展开,依照此法做下去,直到2或3阶行列式;根据行列式的形
13、状找出递推关系,由递推关系来计算出行列式。第二章 矩阵1 矩阵是否表示一个数?【知识点】:矩阵的概念.答:矩阵是一个由数排成的数表,不是数。2 有哪些矩阵表示法?【知识点】:矩阵表示法.答:用大写的英文字母A,B,或Amn, (aij) mn, (aij) 。3 两个矩阵相等有什么条件?【知识点】:矩阵相等的概念.答:矩阵的型相同,对应的元素相等。4 矩阵在什么情况下叫方阵?【知识点】:方阵的概念.答:矩阵的行数与列数相等。5 1阶方阵是什么?【知识点】:1阶方阵。答:1行1列的矩阵。6 上三角矩阵有什么特点?【知识点】:上三角矩阵.答:上三角矩阵是方阵,且主对角线以下的元素都为0的方阵。例如
14、: 是上三角矩阵。7 下三角矩阵有什么特点?【知识点】:下三角矩阵。答:下三角矩阵是方阵,且主对角线以上的元素都为0的方阵.例如: 是下三角矩阵。8 对角矩阵有什么特点?【知识点】:对角矩阵.答:对角矩阵是方阵,且主对角线以外的元素都为0的方阵。例如: 是3阶对角矩阵。9 n阶单位矩阵的含义是什么?【知识点】:单位矩阵的概念。答:主对角线上的元素都为1的对角矩阵。10 不同阶的单位矩阵是否相等?【知识点】:单位矩阵。答:因为两个矩阵相等首先要求它们是同阶的,所以不同阶的单位矩阵不相等。11 零矩阵的含义是什么?【知识点】:零矩阵的概念。答:每个元素都为0的矩阵,它不一定是方阵.12 不同型的零
15、矩阵是否相等?【知识点】:零矩阵。答:因为两个矩阵相等首先要求它们是同阶的,所以不同阶的零矩阵不相等。13 两个矩阵相加有什么条件?【知识点】:矩阵的加法。答:两个矩阵的型要相同。比如要与23矩阵相加的矩阵一定是23矩阵.14 两个矩阵如何相加?【知识点】:矩阵的加法。答:对应位置上的元素相加.例如: = .15 负矩阵是什么含义?【知识点】:负矩阵。答:矩阵的每个元素都添上负号后得到的矩阵为原矩阵的负矩阵。例如: = 。16 两个矩阵如何相减?【知识点】:矩阵的减法。答:AB为A加上B的负矩阵。例如: = + = + = .17 矩阵的加法有交换律和结合律吗?【知识点】:矩阵的加法的基本规律
16、。答:有,即有A+B=B+A, (A+B)+C=A+(B+C).18 数k与矩阵A=(aij)是如何相乘的?【知识点】:矩阵与数的乘法。答:kA为A的每个元素aij都乘数k,即(kaij)。例如: = 。19 两个矩阵的乘法有什么条件?【知识点】:矩阵的乘法.答:第一个矩阵的列数=第二个矩阵的行数,即如果矩阵A的列数是n,则从右边与A相乘的矩阵B的行数必定是n。20 矩阵A=(aij)ms与矩阵B=(bij)sn相乘,所得矩阵C=(cij)的元素cij是怎样得来的?【知识点】:矩阵的乘法。答:元素cij是矩阵A=(aij)ms的第i行的元素与矩阵B=(bij)sn的第j列的对应元素相乘后相加所
17、得,即cij=ai1b1j+ai2b2j+aisbsj。例如: 的第1行第2列的元素c12=第1个矩阵的第1行的元素与第2个矩阵的第2列的相应元素的乘积的和=3(2)+(2)4+73=7。21 矩阵的乘法运算有交换律吗?【知识点】:矩阵的乘法的运算规律。答:没有。22 如果AB=0,能得出A=0或B=0吗?【知识点】:矩阵的乘法的运算规律。答:不能。例如: 但AB=0.23 如果AB=AC,A0, 能得出B=C吗?【知识点】:矩阵的乘法的运算规律。答:不能。例如: 有AB=AC,A0,但BC.24 矩阵的乘法有结合律吗?【知识点】:矩阵的乘法的运算规律。答:有,即(AB)C=A(BC)。25
18、矩阵的乘法有分配律吗?【知识点】:矩阵的乘法的运算规律.答:有,即A(B+C)=AB+AC, (B+C) A =BA+CA。26 如果E是单位矩阵,A是mn矩阵,EA=A,则E是多少阶单位矩阵?【知识点】:矩阵的乘法的应用。答:m阶,根据矩阵乘法的条件,E的行数=A的列数=m,而E是方阵。27 n阶方阵有幂运算,即Ak= ,矩阵的幂运算与数的幂运算有什么不同?【知识点】:矩阵的幂运算。答:对两个n阶方阵A,B,一般来说, (AB)kAkBk,这与数的幂运算不同。28 方阵A的m次多项式是怎样表示的?【知识点】:方阵的多项式。答:a0E+a1A+amAm,其中E是单位矩阵.29 矩阵A的转置是怎
19、样进行的?【知识点】:矩阵的转置.答:依次将矩阵A的行(列)变成列(行)。例如: 的转置为 。30 矩阵Amn转置后成为什么型矩阵?【知识点】:矩阵的转置。答:nm型矩阵,因为转置后的矩阵的行数=原矩阵的列数,转置后的矩阵的列数=原矩阵的行数。31 矩阵A转置两次后与A有什么关系?【知识点】:矩阵的转置的性质.答:相等,即(AT)T=A。32 (A+B)T与AT,BT的关系如何?【知识点】:矩阵的转置的性质.答:(A+B)T=AT+BT.33 (kA)T与AT的关系如何?【知识点】:矩阵的转置的性质。答:(kA)T=kAT。34 (AB)T与AT,BT的关系如何?【知识点】:矩阵的转置的性质。
20、答:(AB)T=BTAT。35 矩阵A成为对称矩阵有什么条件?【知识点】:对称矩阵.答:矩阵A应为方阵且AT=A.36 对称矩阵的乘积矩阵是否为对称矩阵?【知识点】:对称矩阵.答:不一定.例如: 则有 不是对称矩阵。37 反对称矩阵有什么特点?【知识点】:反对称矩阵.答:主对角线上的元素都为0,且aij=aji ,即满足AT=A。38 什么矩阵可以取行列式?【知识点】:矩阵与行列式的某种联系。答:因为行列式的行数与列数要相同,所以只有方阵可以取行列式.39 数乘矩阵kA的行列式|kA等于什么?【知识点】:数乘矩阵的行列式。答:因为数乘矩阵的每个元素是原矩阵的相应元素的k倍,即数乘矩阵的每行都有
21、相同的倍数k,所以|kA=knA,n为矩阵A的阶数.40 两个同阶方阵A,B的乘积AB的行列式AB与A,B的行列式A,|B有什么关系?【知识点】:矩阵与行列式的联系。答:|AB=|A|B|。41 矩阵可逆的定义是怎样的?【知识点】:可逆矩阵.答:对于n阶方阵A,如果存在n阶方阵B,使得AB=BA=E,则方阵A是一个可逆矩阵.42 矩阵的逆矩阵是否唯一?【知识点】:逆矩阵的性质。答:是唯一。43 可逆矩阵的逆矩阵是否可逆?逆矩阵的逆矩阵是什么?【知识点】:逆矩阵的性质.答:可逆矩阵的逆矩阵是可逆。逆矩阵A-1的逆矩阵是A.44 同阶可逆矩阵的乘积是否可逆?【知识点】:逆矩阵的性质。答:同阶可逆矩
22、阵的乘积是可逆的。45 同阶可逆矩阵A,B的乘积AB的逆与A-1,B1有什么关系?【知识点】:逆矩阵的性质。答:(AB)1= B-1 A1 。46 可逆矩阵的转置矩阵是否可逆?【知识点】:逆矩阵的性质.答:可逆矩阵的转置矩阵是可逆的。47 可逆矩阵A的转置矩阵AT的逆与A有什么关系?【知识点】:逆矩阵的性质.答:(AT)1= (A1)T。48 非零数k与可逆矩阵A的乘积kA是否可逆?【知识点】:逆矩阵的性质。答:非零数k与可逆矩阵A的乘积kA是可逆的,且(kA)1= k1A1。49 任何一个方阵是否都有伴随矩阵?【知识点】:伴随矩阵。答:任何一个方阵都有伴随矩阵.50 方阵A=(aij)的伴随
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 线性代数 总结 归纳
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【快乐****生活】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【快乐****生活】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。