极限求法总结.doc
《极限求法总结.doc》由会员分享,可在线阅读,更多相关《极限求法总结.doc(6页珍藏版)》请在咨信网上搜索。
1、极限的求法极限的求法1、利用极限的定义求极限2、直接代入法求极限3、利用函数的连续性求极限4、利用单调有界原理求极限5、利用极限的四则运算性质求极限6。 利用无穷小的性质求极限7、无穷小量分出法求极限8、消去零因子法求极限9、 利用拆项法技巧求极限10、换元法求极限11、利用夹逼准则求极限12、利用中值定理求极限13、 利用罗必塔法则求极限14、利用定积分求和式的极限15、利用泰勒展开式求极限16、分段函数的极限1、利用极限的定义求极限用定义法证明极限,必须有一先决条件,即事先得知道极限的猜测值A,这种情况一般较困难推测出,只能对一些比较简单的数列或函数推测分析出极限值,然后再去用定义法去证明
2、,在这个过程中,放缩法和含绝对值的不等式总是密切相连的。例:的定义是指:0,=(,)0,0|x|f(x)A为了求可先对的邻域半径适当限制,如然后适当放大|f(x)-A|(x) (必然保证(x)为无穷小),此时往往要用含绝对值的不等式:|x+a=(x)+(+a)|x+|+a|+a+1域x+a=|(x-)+(+a)+ax-|+a-1从(x)2,求出2后,取min(1,2),当0x- |时,就有f(x)A|.例:。其中,。2、 直接代入法求极限适用于分子、分母的极限不同时为零或不同时为例 1。求. 分析由于, 所以采用直接代入法。 解原式=3、利用函数的连续性求极限定理:一切连续函数在其定义区间内的
3、点处都连续,即如果是函数的定义区间内的一点,则有.一切初等函数在其定义域内都是连续的,如果是初等函数,是其定义域内一点,则求极限时,可把代入中计算出函数值,即=.对于连续函数的复合函数有这样的定理:若在连续且,在处连续,则复合函数在处也连续,从而或.例:解:复合函数在处是连续的,即有4、利用单调有界原理求极限这种方法是利用定理:单调有界数列必有极限,先判断极限存在,进而求极限。例:求解:令,则,,即,所以数列单调递增,由单调有界定理知,有限,并设为,,即,所以.5、利用极限的四则运算性质求极限定理:若极限和都存在,则函数,当时也存在且又若c0,则在时也存在,且有。利用该种方法求极限方法简单,但
4、要注意条件是每项或每个因子极限存在,一般情况所给的变量都不满足这个条件,例如出现,等情况,都不能直接运用四则运算法则,必须对变量进行变形.变形时经常用到因式分解、有理化的运算以及三角函数的有关公式。总的说来,就是函数的和、差、积、商的极限等于函数极限的和、差、积、商。例:求解:由于当时,与的极限都不存在,故不能利用“极限的和等于和的极限”这一法则,先可进行化简这样得到的新函数当时,分子分母都有极限且分母的极限不为零,可用商的极限法则,即例2. 求。解6. 利用无穷小的性质求极限我们知道在某一过程中无穷大量的倒数是无穷小量,有界变量乘无穷小是无穷小,对一些特殊的函数而言用其他方法很难求得,只能用
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 极限 求法 总结
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【丰****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【丰****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。