现代分子生物学复习资料.doc
《现代分子生物学复习资料.doc》由会员分享,可在线阅读,更多相关《现代分子生物学复习资料.doc(10页珍藏版)》请在咨信网上搜索。
1、现代分子生物学资料第一章 绪论编辑:杜华伟一、三大发现:列文虎克的细胞学说、焦耳用实验确立的能量守恒定律、达尔文的进化论。二、分子生物学定义:从分子水平研究生物大分子的结构与功能从而阐明生命现象本质的科学 ,主要指遗传信息的传递(复制)、保持(损伤和修复)、基因的表达(转录和翻译)与调控。三、分子生物学研究内容:1、DNA重组技术(基因工程) 2、基因的表达调控 3、生物大分子的结构和功能研究(结构分子生物学) 4、基因组、功能基因组与生物信息学研究四、DNA发现的几个实验:美国科学家AVERY用S型和R型致病菌侵染小鼠的实验、美国科学家HERSHEY在1952年从事的同位素分子标记法噬菌体侵
2、染细菌的试验。第二章 染色体与DNA一、染色体的结构和组成 原核生物:DNA形成一系列的环状附着在非组蛋白上形成类核。 真核生物染色体有蛋白质和DNA组成,蛋白质包括组蛋白(H1,H2A、H2B、H3、H4)和非组蛋白。2、C值是一种生物的单倍体基因组DNA的总量。 C值往往与种系的进化的复杂程度不一致,某些低等生物却有较大的C值,这就是著名的“C值反常现象”。 3、DNA的一级结构:指4种脱氧核苷酸的连接及其排列顺序, DNA序列是这一概念的简称。4、双螺旋的基本特点:双链反向平行配对而成;脱氧核糖和磷酸交替连接,构成DNA骨架,碱基排在内侧;内侧碱基通过氢键互补形成碱基对(A:T,C:G)
3、。5、DNA 的二级结构指两条多核苷酸链反向平行盘绕所产生的双螺旋结构。是有Watson和Crick在1953年共同发现的。分类:右手螺旋(是其通常存在形式):A-DNA,B-DNA。左手螺旋:Z-DNA。6、超螺旋:DNA双螺旋结构中,一般每转一圈有十个核苷酸对,双螺旋总处于能量最低状态。正常DNA双螺旋额外的多转或少转几圈,就会出现双螺旋空间结构改变,在DNA分子中形成额外张力,若此时DNA分子的末端是固定的或是环状分子,双联不能自由转动,额外的张力就不能释放而导致DNA分子内部院子空间位置的重排,造成扭曲,即出现 超螺旋结构。从DNA到染色体过程的压缩过程:核小体的形成是染色体中DNA压
4、缩的第一个阶段,在核小体中DNA盘绕组蛋白八聚体核心,从而使分子收缩至原尺寸的1/7。 染色质细丝盘绕成螺旋管状的粗丝,每个螺旋管包含6个核小体,其压缩比为6。 螺旋管进一步压缩形成超螺旋,压缩比是40. 超螺旋圆筒进一步压缩5倍便成为染色体单体。 总压缩比是76405。7、DNA的半保留复制:由亲代DNA生成子代DNA时,每个新形成的子代DNA中,一条链来自亲代DNA,而另一条链则是新合成的,这种复制方式称半保留复制。8半不连续复制:DNA复制过程中,前导链的合成以53方向,随着亲本双链体的解开而连续进行复制;后随链在合成过程中,一段亲本DNA单链首先暴露出来,然后以与复制叉移动相反的方向,
5、按照53方向合成一系列的冈崎片段,然后再把它们连接成完整的后随链。这种前导链的连续复制和后随链的不连续复制在生物界是有普遍性的,因而称为双螺旋的半不连续复制。9、从复制原点到终点,组成一个复制单位,叫复制子。复制时,解链酶等先将DNA的一段双链解开,形成复制点,这个复制点的形状象一个叉子,故称为复制叉。10、线性DNA双链的复制方式:、将线性复制子转变为环状或多聚分子。、在DNA末端相处发夹式结构。、在某种蛋白质的介入下,在真正的末端上启动复制。 环状双链DNA的复制分为型、滚环型和D-环型几种类型。11、后随链的复制由引发体来引发,引发体像火车头一样在后随链分叉的方向上前进,并在模板上断断续
6、续的引发生成后随链的引物RNA短链,再由DNA聚合酶III作用合成DNA,直至遇到下一个引物或冈崎片段为止。由RNaseH降解RNA引物并由DNA聚合酶I将缺口补齐,再由DNA连接酶将两个冈崎片段连在一起形成大分子DNA。12、冈崎片段:DNA复制过程中,两条新生链都只能从5端向3端延伸,前导链连续合成,滞后链分段合成。这些分段合成的新生DNA片段称冈崎片段。13、DNA的修复包括错配修复(恢复错配)、碱基切除修复(切除突变的碱基)、核甘酸切除修复(修复被破坏的DNA)、DNA直接修复(修复嘧啶二体或甲基化DNA)、SOS系统(DNA的修复,导致变异)14、DNA的转座或叫移位(transpo
7、sition):由可移位因子(transposable element) 介导的遗传物质重排现象。 转座子(transposon Tn):存在于染色体DNA上可自主复制和位移的基本单位。原核生物转座子的类型:1、插入序列 2、复合转座子 3、TnA家族15、DNA的复制酶:引物合成酶(此酶以DNA为模板合成一段RNA,这段RNA作为合成DNA的引物) DNA聚合酶原核生物中的DNA聚合酶(聚合酶主要是对DNA损伤的修复;以及在DNA复制时切除RNA引物并填补其留下的空隙。聚合酶修复紫外光引起的DNA损伤。聚合酶是 DNA 复制的主要聚合酶,还具有3-5外切酶的校对功能,提高DNA复制的保真性。
8、)(真核生物中的DNA聚合酶:聚合酶:引物合成。聚合酶:损伤修复。聚合酶:线粒体DNA的复制。 聚合酶:核DNA的复制。 聚合酶:与后随链合成有关) DNA连接酶:DNA连接酶在DNA复制、损伤修复、重组等过程中起重要作用 DNA 拓扑异构酶:拓扑异构酶:使DNA一条链发生断裂和再连接,作用是松解负超螺旋。主要集中在活性转录区,同转录有关。拓扑异构酶:该酶能暂时性地切断和重新连接双链DNA,作用是将负超螺旋引入DNA分子。同复制有关。DNA 解螺旋酶 /解链酶:通过水解ATP获得能量来解开双链DNA。 第三章编辑:纪明昌中心法则:转录:是指拷贝出一条与DNA链序列完全相同(除了TU之外)的RN
9、A单链的过程,是基因表达的核心步骤。包括:模板识别,转录起始,转录延伸,转录终止。转录单元(transcription unit)一段从启动子开始至终止子结束的DNA序列。有意义链和反义链:我们把与mRNA序列相同的那条DNA链成为编码链coding strand或称有意义链sense strand,并把另一条根据碱基互补原则指导mRNA合成的DNA链成为模板链template strand或称反义链antisense strand。原核RNA聚合酶:全酶: 2 核心酶:2 2(全酶 holoenzyme)=2+真核RNA聚合酶:根据它们对-鹅膏蕈碱(- amanitin)的敏感性不同分为RN
10、A聚合酶I、II、III。 RNA聚合酶I 对-鹅膏蕈碱不敏感 ,RNA聚合酶II 对低浓度-鹅膏蕈碱敏感 ,RNA聚合酶III 对高浓度-鹅膏蕈碱敏感 酶位置转录产物相对活性对-鹅膏蕈碱的敏感性RNA聚合酶核仁rRNA50-70%不敏感RNA聚合酶核质hnRNA20-40%敏感RNA聚合酶核质tRNA约10%存在物种特异性RNA聚合酶全酶与启动子区闭合双链DNA结合形成二元闭合复合物(全酶、模板DNA)再解链为二元开链复合物,转录起始,形成三元复合物(全酶、模板DNA、新生RNA),s因子释放,RNA合成开始启动子定义:指能被RNA聚合酶识别、结合并启动基因转录的一段DNA序列。原核生物启动
11、子结构-10 signal (TATA box,Pribnow box) 酶的紧密结合位点(富含AT碱基,利于双链打开) -35 signal( TTGACA )提供了RNA聚合酶全酶识别的信号 transcription start site10区和-35区的最佳距离-10区与-35区的最佳间距大约是1619bp.Pribnow区下降突变(TATAATAATAAT)Pribnow区上升突变(TATGTTTATATT)真核生物启动子结构1、核心启动子(core promoter)指保证RNA聚合酶转录正常起始所必需的、最少的DNA序列,包括转录起始位点及转录起始位点上游TATA区-25bp-3
12、0bp TATA box DNA解链开始转录位置2、上游启动子元件(upstream promoter element,UPE )(1)CAAT box -75左右,RNA聚合酶结合有关(2)更上游 GC box 转录因子结合其上3、增强子顺式作用元件(cis-acting element)定义:影响自身基因表达活性的非编码DNA序列。能直接、间接辨认和结合转录上游区段DNA的蛋白质,现已发现数百种,统称为反式作用因子(trans-acting factors)。 反式作用因子中,直接或间接结合RNA聚合酶的,则称为转录因子(transcriptional factors, TF)。 原核与真
13、核生物mRNA的特征比较原核生物mRNA的特征:原核mRNA的半衰期短,细菌内mRNA的转录、翻译与降解几乎是同时进行许多原核mRNA以多顺反子的形式存在原核mRNA的5端无帽子结构或只有短的Poly(A)尾巴在起始密码子AUG上游7-12个核苷酸处,有一段可与核糖体16S rRNA配对结合的、富含嘌呤的3-9个核苷酸的共同序列,一般为AGGA,此序列称SD序列. 使得结合于30S亚基上的起始tRNA能正确地定位于mRNA的起始密码子AUG真核生物mRNA的特征真核mRNA的5端存在帽子结构有利于核糖体对mRNA的识别,Cap0必需帽子结构具有增强翻译效率的作用:增加mRNA的稳定性,避免核酸
14、酶的作用绝大多数真核mRNA具有Poly(A)尾巴mRNA穿越核膜的能力有关,影响到mRNA的稳定性和翻译效率。polyA+与polyA-终止分为两类: 强终止子内部终止子:不依赖Rho ()因子的终止。 弱终止子 需要因子(rho factor),又称为依赖性终止子( Rho-dependent terminator不依赖于因子的终止 模板DNA上存在终止转录的特殊信号终止子又称为内在终止子,内在终止子1、终止位点上游一般存在一个富含GC碱基的二重对称区,由这段DNA转录产生的RNA容易形成发卡结构2、在终止位点签名有一段48个A组成的序列,所以转录产物的3端为寡聚U这种结构的存在决定了转录
15、的终止依赖于因子的终止 r因子结合于新合成的RNA链,借助水解ATP的能量沿RNA 链运动,当RNA 聚合酶遇终止子停止时, r因子追上酶,促使转录终止。转录后加工5端加帽 3端加尾 RNA的剪接 RNA的编辑5端加帽5端的一个核苷酸总是7-甲基鸟核苷三磷酸(m7Gppp)。mRNA5端的这种结构称为帽子(cap)。能被核糖体小亚基识别,促使mRNA和核糖体的结合; m7Gppp结构能有效地封闭mRNA 5末端,以保护mRNA免受5核酸外切酶的降解,增强mRNA的稳定。3端加尾 提高了mRNA在细胞质中的稳定性RNA的剪接(Splicing)生物体内内含子的主要类型:P98将转录形成的mRNA
16、前体(pre-mRNA)中的内含子剪除,将外显子连接起来的加工过程参与RNA剪接的物质:snRNA(核内小分子RNA)snRNP(与snRNA结合的核蛋白)RNA的编辑 是指转录后的RNA在编码区发生碱基的突变、加入或丢失等现象。内含子(intron):真核细胞基因DNA中的不编码序列,这部分序列并不编码蛋白质,又称间隔序列。 外显子(exon or extron):真核细胞基因DNA中的编码序列,这部分序列可转录为RNA,并翻译成蛋白质,也称表达序列。可译框架(ORF,open reading frame)真核生物断裂(不连续)基因在表达过程中时必须经历的步骤mRNA前体内含子的剪接hnRN
17、A:(heterogenous nuclear RNA) mRNA原始转录产物或前体snRNA:(small nuclear RNA) 100-300 核苷酸,以U分类:U1-6snRNP:(small nuclear ribonucleoprotein) 核酶(ribozyme)指一类具有催化功能的RNA分子,通过催化靶位点RNA链中的磷酸二酯键的断裂,特异性的剪切底物RNA分子,从而阻断基因的表达。第四章 生物信息的传递(下)从mRNA到蛋白质编辑:王应卓n 遗传密码 (genetic code): DNA(或mRNA)中核苷酸序列与蛋白质中氨基酸序列之间的对应关系。(二)遗传密码的性质(
18、特点)1.密码的连续性:读码无标点、无重叠,阅读方向为532.密码的简并性 大多数氨基酸都存在几个密码,由一种以上密码子编码同一个氨基酸的现象称为密码子的简并性(degeneracy)。密码子碱基数确定和对应性(64个密码子对20种氨基酸) 确定同一个氨基酸的不同密码称为同义密码(synonymous codons)。 密码的简并性可以减少碱基突变造成的有害效应。 在标准遗传密码表中,只有一个密码子的氨基酸是Trp和Met。3.密码的方向性 指阅读mRNA模板上的三联体密码时,只能沿53方向进行。4.密码的摆动性1966年,Crick提出摆动假说(Wobble hypothesis) tRNA
19、上的反密码子与mRNA上的密码子配对时,密码子的第一位、第二位碱基配对是严格的,第三位碱基可以有一定变动,这种现象称为密码的摆动性或变偶性(wobble)。 I(肌苷,次黄嘌呤核苷)A、U、C配对。5.密码的普遍性与特殊性 遗传密码无论在体内还是体外,无论是对病毒、细菌、动物还是植物而言都通用。 在真核细胞线粒体中, UGA不是终止密码子,是Trp的密码子; AUA不是Ile的密码子,而是Met的密码子; AGA和AGG不是Arg密码子,而是终止密码子。第二节 tRNAtRNA:运送特定氨基酸到核糖体上合成蛋白质。一、tRNA的二级结构 二级结构:三叶草型 三级结构:倒L型 稀有核苷含量多tR
20、NA的功能在蛋白质合成中,起着运载氨基酸的作用,按照mRNA链上的密码子所决定的氨基酸顺序将氨基酸转运到核糖体的特定部位。 3端CCAOH上的氨基酸接受臂 识别氨酰tRNA合成酶的位点 核糖体识别位点 反密码子位点(一)起始tRNA和延伸tRNA一类特异地识别mRNA模板上起始密码子的tRNA叫起始tRNA,其他tRNA为延伸tRNA. 原核起始tRNA携带fMet 真核起始tRNA携带Met氨基酰-tRNA的表示方法:真核生物: Met-tRNAiMet;原核生物: fMet-tRNAifMet。1、无义突变 在蛋白质的结构基因中,一个核苷酸的改变可能使代表某个氨基酸的密码子变成终止密码子(
21、UAG、UGA、UAA),使蛋白质合成提前终止,合成无功能的或无意义的多肽,这种突变就称为无义突变.2、错义突变 错义突变是由于结构基因中某个核苷酸的变化使一种氨基酸的密码变成另外一种氨基酸的密码. 3、原核生物翻译过程中核糖体结构模式:P位:肽酰位(peptidyl site)、A位:氨基酰位(aminoacyl site)、E位:排出位(exit site)(一)原核生物翻译起始复合物形成1) 1、翻译起始需要的几种成分:30S小亚基、模板mRNA、fMet-tRNAfMet、三个翻译起始因子(IF-1、IF-2 、 IF-3)、GTP、50S大亚基、Mg 2四 、肽链合成的终止和释放I.
22、 识别:RF(释放因子)识别终止密码,进入核糖体的A位II. 水解:RF使转肽酶变为酯酶,多肽链与tRNA之间的酯键被水解,多肽链释放III. 脱离:模板mRNA、RF以及空载tRNA与核糖体脱离IV. 分子伴侣(molecular chaperone) 2、 能够在细胞内辅助新生肽链正确折叠的蛋白质。是一类序列上没有相关性但有共同功能的保守性蛋白质。 按是否自发性折叠分为:热休克蛋白和伴侣素。4、信号肽假说:信号肽假说内容:(1)蛋白质合成起始首先合成信号肽(2)SRP(信号识别蛋白)与信号肽结合,翻译暂停(3)SRP与SRP受体结合,核糖体与膜结合,翻译重新开始(4)信号肽进入膜结构(5)
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 现代 分子生物学 复习资料
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【人****来】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【人****来】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。