八年级数学下-勾股定理导学案(全).doc
《八年级数学下-勾股定理导学案(全).doc》由会员分享,可在线阅读,更多相关《八年级数学下-勾股定理导学案(全).doc(18页珍藏版)》请在咨信网上搜索。
1、18.1 勾股定理(1)学习目标:1、了解勾股定理的发现过程,掌握勾股定理的内容,会用面积法证明勾股定理。2、培养在实际生活中发现问题总结规律的意识和能力。3、介绍我国古代在勾股定理研究方面所取得的成就,激发爱国热情,勤奋学习。重点:勾股定理的内容及证明。难点:勾股定理的证明。学习过程:一、预习新知1、正方形边长和面积有什么数量关系?2、以等腰直角三角形两直角边为边长的小正方形的面积和以斜边为边长的大正方形的面积之间有什么关系?归纳:等腰直角三角形三边之间的特殊关系。(1)那么一般的直角三角形是否也有这样的特点呢?(2)组织学生小组学习,在方格纸上画出一个直角边分别为3和4的直角三角形,并以其
2、三边为边长向外作三个正方形,并分别计算其面积。(3)通过三个正方形的面积关系,你能说明直角三角形是否具有上述结论吗?(4)对于更一般的情形将如何验证呢?二、课堂展示方法一;如图,让学生剪4个全等的直角三角形,拼成如图图形,利用面积证明。S正方形_方法二;已知:在ABC中,C=90,A、B、C的对边为a、b、c。求证:a2b2=c2。以a、b 为直角边,以c为斜边作两个全等的直角三角形,则每个直角三角形的面积等于ab. 把这两个直角三角形拼成如图所示形状,使A、E、B三点在一条直线上. RtEAD RtCBE, ADE = BEC. AED + ADE = 90, AED + BEC = 90.
3、 DEC = 18090= 90. DEC是一个等腰直角三角形,它的面积等于c2.又 DAE = 90, EBC = 90, ADBC. ABCD是一个直角梯形,它的面积等于_归纳:勾股定理的具体内容是 。三、随堂练习1、如图,直角ABC的主要性质是:C=90,(用几何语言表示)两锐角之间的关系: ;(2)若B=30,则B的对边和斜边: ;(3)三边之间的关系: 四、课堂检测1、在RtABC中,C=90若a=5,b=12,则c=_;若a=15,c=25,则b=_;若c=61,b=60,则a=_;若ab=34,c=10则SRtABC =_。2、已知在RtABC中,B=90,a、b、c是ABC的三
4、边,则c= 。(已知a、b,求c)a= 。(已知b、c,求a)b= 。(已知a、c,求b)3、直角三角形两直角边长分别为5和12,则它斜边上的高为_。4、已知一个Rt的两边长分别为3和4,则第三边长的平方是() A、25B、14C、7D、7或255、等腰三角形底边上的高为8,周长为32,则三角形的面积为() A、56B、48C、40D、3218.1 勾股定理(2)学习目标:1、会用勾股定理解决简单的实际问题。2、树立数形结合的思想。3、经历探究勾股定理在实际问题中的应用过程,感受勾股定理的应用方法。4、培养思维意识,发展数学理念,体会勾股定理的应用价值。重点:勾股定理的应用。难点:实际问题向数
5、学问题的转化。一、预习新知1、在解决问题时,每个直角三角形需知道几个条件?直角三角形中哪条边最长?2、在长方形ABCD中,宽AB为1m,长BC为2m ,求AC长问题(1)在长方形ABCD中AB、BC、AC大小关系?(2)一个门框的尺寸如图1所示若有一块长3米,宽0.8米的薄木板,问怎样从门框通过?若薄木板长3米,宽1.5米呢?BC1m 2mA若薄木板长3米,宽2.2米呢?为什么?图1二、课堂展示例:如图2,一个3米长的梯子AB,斜着靠在竖直的墙AO上,这时AO的距离为2.5米求梯子的底端B距墙角O多少米?OBDCACAOBOD如果梯的顶端A沿墙下滑0.5米至C. 算一算,底端滑动的距离近似值(
6、结果保留两位小数) 图2三、随堂练习1、小明和爸爸妈妈十一登香山,他们沿着45度的坡路走了500米,看到了一棵红叶树,这棵红叶树的离地面的高度是 米。2、如图1,山坡上两株树木之间的坡面距离是米,则这两株树之间的垂直距离是 米,水平距离是 米。图1 图2 图3四、课堂检测1、如图2,一根12米高的电线杆两侧各用15米的铁丝固定,两个固定点之间的距离是 。2、如图3,原计划从A地经C地到B地修建一条高速公路,后因技术攻关,可以打隧道由A地到B地直接修建,已知高速公路一公里造价为300万元,隧道总长为2公里,隧道造价为500万元,AC=80公里,BC=60公里,则改建后可省工程费用是多少?3、如图
7、,欲测量松花江的宽度,沿江岸取B、C两点,在江对岸取一点A,使AC垂直江岸,测得BC=50米,B=60,则江面的宽度为 。4、有一个边长为1米正方形的洞口,想用一个圆形盖去盖住这个洞口,则圆形盖半径至少为 米。图6 5、一根32厘米的绳子被折成如图所示的形状钉在P、Q两点,PQ=16厘米,且RPPQ,则RQ= 厘米。S1S2S3图7 6、如图6,分别以Rt ABC三边为边向外作三个正方形,其面积分别用S1、S2、S3表示,容易得出S1、S2、S3之间有的关系式 变式:如图718.1 勾股定理(3)学习目标: 1、能利用勾股定理,根据已知直角三角形的两边长求第三条边长;并在数轴上表示无理数。2、
8、体会数与形的密切联系,增强应用意识,提高运用勾股定理解决问题的能力。3、培养数形结合的数学思想,并积极参与交流,并积极发表意见。重点:利用勾股定理在数轴上表示无理数。难点:确定以无理数为斜边的直角三角形的两条直角边长。一、预习新知1、探究:我们知道数轴上的点有的表示有理数,有的表示无理数,你能在数轴上画出表示的点吗?2、分析:如果能画出长为_的线段,就能在数轴上画出表示的点。容易知道,长为的线段是两条直角边都为_的直角边的斜边。长为的线段能是直角边为正整数的直角三角形的斜边吗?利用勾股定理,可以发现,长为的线段是直角边为正整数_、 _的直角三角形的斜边。3、作法:在数轴上找到点A,使OA=_,
9、作直线垂直于OA,在上取点B,使AB=_,以原点O为圆心,以OB为半径作弧,弧与数轴的交点C即为表示的点。4、在数轴上画出表示的点?(尺规作图)二、课堂展示例1、已知直角三角形的两边长分别为5和12,求第三边。例2、已知:如图,等边ABC的边长是6cm。求等边ABC的高。 求SABC。三、随堂练习1、填空题在RtABC,C=90,a=8,b=15,则c= 。在RtABC,B=90,a=3,b=4,则c= 。在RtABC,C=90,c=10,a:b=3:4,则a= ,b= 。(4)已知直角三角形的两边长分别为3cm和5cm,则第三边长为 。2、已知等腰三角形腰长是10,底边长是16,求这个等腰三
10、角形面积。四、课堂检测1、已知直角三角形中30角所对的直角边长是cm,则另一条直角边的长是( )A. 4cm B. cm C. 6cm D. cm2、ABC中,AB15,AC13,高AD12,则ABC的周长为() A42 B32 C42 或 32 D37 或 333、一架25分米长的梯子,斜立在一竖直的墙上,这时梯足距离墙底端7分米.如果梯子的顶端沿墙下滑4分米,那么梯足将滑动( )A. 9分米B. 15分米C. 5分米 D. 8分米4、如图,学校有一块长方形花铺,有极少数人为了避开拐角走“捷 径”,在花铺内走出了一条“路”他们仅仅少走了 步路(假设2步为1米),却踩伤了花草 5、等腰ABC的
11、腰长AB10cm,底BC为16cm,则底边上的高为 ,面积为 . 6、一个直角三角形的三边为三个连续偶数,则它的三边长分别为 7、已知:如图,四边形ABCD中,ADBC,ADDC,ABAC,B=60,CD=1cm,求BC的长。18.2 勾股定理的逆定理(一)学习目标1、体会勾股定理的逆定理得出过程,掌握勾股定理的逆定理。2、探究勾股定理的逆定理的证明方法。3、理解原命题、逆命题、逆定理的概念及关系。重点:掌握勾股定理的逆定理及简单应用。难点:勾股定理的逆定理的证明。一、预习新知1、三边长度分别为3 cm、4 cm、5 cm的三角形与以3 cm、4 cm为直角边的直角三角形之间有什么关系?你是怎
12、样得到的?2、你能证明以6cm、8cm、10cm为三边长的三角形是直角三角形吗? 图18.2-23、如图18.2-2,若ABC的三边长、满足,试证明ABC是直角三角形,请简要地写出证明过程4、此定理与勾股定理之间有怎样的关系?(1)什么叫互为逆命题(2)什么叫互为逆定理(3)任何一个命题都有 _,但任何一个定理未必都有 _5、说出下列命题的逆命题。这些命题的逆命题成立吗?(1)两直线平行,内错角相等;(2)如果两个实数相等,那么它们的绝对值相等;(3)全等三角形的对应角相等;(4)角的内部到角的两边距离相等的点在角的平分线上。二、课堂展示例1、判断由线段、组成的三角形是不是直角三角形:(1);
13、 (2)(3); (4);三、随堂练习1、如果三条线段长a,b,c满足,这三条线段组成的三角形是不是直角三角形?为什么?2、A,B,C三地的两两距离如图所示,A地在B地的正东方向,C地在B地的什么方向?3、思考:我们知道3、4、5是一组勾股数,那么3k、4k、5k(k是正整数)也是一组勾股数吗?一般地,如果a、b、c是一组勾股数,那么ak、bk、ck(k是正整数)也是一组勾股数吗?四、课堂检测1、若ABC的三边a,b,c满足条件a2+b2+c2+338=10a+24b+26c,试判定ABC的形状2、一根24米绳子,折成三边为三个连续偶数的三角形,则三边长分别为多少米?此三角形的形状为?3、已知
14、:如图,在ABC中,CD是AB边上的高,且CD2=ADBD。求证:ABC是直角三角形。18.2勾股定理逆定理(2)学习目标:1、进一步掌握勾股定理的逆定理,并会应用勾股定理的逆定理判断一个三角形是否是直角三角形,能够理解勾股定理及其逆定理的区别与联系,掌握它们的应用范围。2、培养逻辑推理能力,体会“形”与“数”的结合。3、在不同条件、不同环境中反复运用定理,达到熟练使用,灵活运用的程度。4、培养数学思维以及合情推理意识,感悟勾股定理和逆定理的应用价值。重点:勾股定理的逆定理难点:勾股定理的逆定理的应用一、预习新知已知:如图,四边形ABCD,ADBC,AB=4,BC=6,CD=5,AD=3。求:
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 完整 word 八年 级数 勾股定理 导学案
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【天****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【天****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。