具有部分粘性和阻尼的三维热带气候模型的全局正则性.pdf
《具有部分粘性和阻尼的三维热带气候模型的全局正则性.pdf》由会员分享,可在线阅读,更多相关《具有部分粘性和阻尼的三维热带气候模型的全局正则性.pdf(9页珍藏版)》请在咨信网上搜索。
1、应用数学MATHEMATICA APPLICATA2024,37(1):80-88Global Regularity for the 3D TropicalClimate Model with Partial Viscosityand DampingZENG Ying(曾颖),BIE Qunyi(别群益)(College of Science,China Three Gorges University,Yichang 443002,China)Abstract:In this paper,we study the three dimensional tropical climate model
2、 withdamping|u|1u on the barotropic mode of the velocity.By using the energy estimation,we obtain the global existence and uniqueness of a strong solution when 4 and 32.Key words:Tropical climate model;Global well-posedness;Strong solution;DampingCLC Number:O175.2AMS(2010)Subject Classification:35Q3
3、5;76D03Document code:AArticle ID:1001-9847(2024)01-0080-091.IntroductionIn this paper,we consider the following three dimensional tropical climate model withpartial viscosity and damping:tu+(u )u hu+|u|1u+(w w)+p=0,x R3,t 0,tw+(u )w+()w+(w )u+=0,t+(u )+w=0,u=0,u(x,0)=u0(x),w(x,0)=w0(x),(x,0)=0(x),(1
4、.1)where vector fields u(x,t)and w(x,t)denote the barotropic mode and the first baroclinicmode of the velocity field,respectively,p=p(x,t)and=(x,t)stand for the scalar pressureand scalar temperature.The real parameters,and are non-negative constants.Thedamping coefficient 0 and,1 are constants.Here,
5、h:=21+22is the Laplaceoperator in the horizontal variables.System(1.1)is related to the following classical tropicalclimate model with damping:tu+(u )u u+|u|1u+(w w)+p=0,x R3,t 0,tw+(u )w w+(w )u+=0,t+(u )+w=0,u=0,u(x,0)=u0(x),w(x,0)=w0(x),(x,0)=0(x).(1.2)When there is no damping in the system(1.2),
6、i.e.,=0,the global regularity re-sults have been investigated in 1-3 etc.When,=0,the system(1.2)reduces toReceived date:2022-11-28Foundation item:Supported by the National Natural Science Foundation of China(11871305)Corresponding author:BIE Qunyi,male,Han,Hubei,professor,major in partial differenti
7、alequation.No.1ZENG Ying,et al.:Global Regularity for the 3D Tropical Climate Model81the original tropical climate model derived by Frierson,Majda and Pauluis4.In this case,YE and ZHU56considered the global strong solutions when the viscosity depends on thetemperature.When 0 in(1.2),MA and WAN7showe
8、d the global well-posedness for the smalldata.YUAN and CHEN8obtained the global existence and uniqueness of the strong solutionprovided that 4 and(u0,w0,0)H1(R3)(H1(R3)L2m(R3)(H1(R3)L2m(R3)(1.3)with m 32.On the other hand,when there are damping terms 2|w|1w and 3|1 in(1.2)2and(1.2)3,respectively,YUA
9、N and ZHANG9proved that there exists the global and uniquesolution when,and satisfy some conditions.Berti,Bisconti and Catania10establisheda regularity criterion,thanks to which the local smooth solution(u,w,)can actually beextended globally in time.For some global regularity results for the NavierS
10、tokes equations,micropolar equationsand MHD equations with damping terms,we can refer to 11-14.Let us mention that in 14,LIU et al.studied the existence and uniqueness of a global solution for the three-dimensionalBoussinesq-MHD equations with partial viscosity and damping.Motivated by the works men
11、tioned above,we will consider the system(1.1),which is thecase for the system(1.2)with partial viscosity and damping.We focus on the global existenceand uniqueness of the strong solution to the system(1.1).The work of this paper has two main points.First,compared with the system(1.2)considered by 7-
12、8,we investigate the case that(1.1)1contains the Laplace operator huonly with respect to the horizontal variables.Second,we do not need the initial conditionsw0 L2m(R3)and 0 L2m(R3)in(1.3).However,in order to control the term 3u443L2ininequalities(2.12)and(2.14)below,we need the condition 32.Before
13、stating our main theorem,we shall introduce some notations and functional set-tings used in the sequel.Since the horizontal variable xh:=(x1,x2)plays a different role withthe vertical variable x3,it is natural to introduce the so called anisotropic Sobolev spacesHs,sfor all s,s R,that is,the space H
14、s,sis the Sobolev space with regularity Hsin xhand Hsin x3.It is easy to check that L2=H0,0and H1=H1,1.Moreover,we shall use thenotation h:=(1,2).Definition 1.1We call the function(u(x,t),w(x,t),(x,t)the strong solution of thesystem(1.1)if it is a weak solution of(1.1)satisfyingu(x,t)Lloc(R+;H0,1(R3
15、)L2loc(R+;H1(R3)L+1loc(R+;L+1loc(R3),w(x,t)Lloc(R+;H1(R3)L2loc(R+;H+1(R3),(x,t)Lloc(R+;H1(R3)L2loc(R+;H2(R3),(u,w,)2L2+2t0(hu2L2+w2L2+2L2+u+1L+1)dx(u0,w0,0)2L2,u=0,u(x,0)=u0(x),w(x,0)=w0(x),(x,0)=0(x).(1.4)Now,we state our main result as follows.82MATHEMATICA APPLICATA2024Theorem 1.1 Let u0 H0,1(R3)
16、,w0 H1(R3),0 H1(R3)such that divu0=0,4and 32.Then,the system(1.1)admits a unique global solution(u(x,t),w(x,t),(x,t)satisfyingu(x,t)Lloc(R+;H0,1(R3)L2loc(R+;H1(R3)L+1loc(R+;L+1loc(R3),w(x,t)Lloc(R+;H1(R3)L2loc(R+;H+1(R3),(x,t)Lloc(R+;H1(R3)L2loc(R+;H2(R3).Moreover,the solution(u(x,t),w(x,t),(x,t)dep
17、ends continuously on the initial data.2.Proof of Theorem 1.1This section is devoted to the proof of Theorem 1.1.By a priori estimates and takinglimits of the Galerkin approximated solutions,we can obtain the existence of a global strongsolution.Therefore,in the sequel,we give a priori estimates and
18、prove Theorem 1.1 bystandard procedure.We split this section into two parts.The first part is for the existence while the secondone is for the uniqueness.Step 1A priori estimatesFirst,multipling(1.1)1,(1.1)2and(1.1)3by u,w and,respectively,and summing themup,we get after integrating by parts that12d
19、dt(u2L2+w2L2+2L2)+hu2L2+w2L2+2L2+u+1L+1=R3(u )u udx R3(u )w wdx R3(u )dx R3p udxR3 (w w)udx R3(w )u w R3 wdx R3 w dx=0.(2.1)Integrating with respect to t,we arrive at(u,w,)2L2+2t0(hu(t)2L2+w(t)2L2+(t)2L2+u(t)+1L+1)d=(u0,w0,0)2L2.(2.2)Thus,it holds thatu(x,t)L(0,T;L2(R3)L2(0,T;H1,0(R3)L+1(0,T;L+1(R3)
20、,w(x,t)L(0,T;L2(R3)L2(0,T;H(R3),(x,t)L(0,T;L2(R3)L2(0,T;H1(R3).(2.3)Next,we shall obtain estimates of the derivative of(u,w,).To this end,we multiply(1.1)1by 23u and use integration by parts over R3to get12ddt3u(t)2L2+h3u(t)2L2R3(u )u 23u(t)dx R3|u|1u 23u(t)dx R3 (w w)23u(t)dx=0.(2.4)Similarly,we de
21、duce from(1.1)2and(1.1)3that12ddtw2L2+1w2L2R3(u)wwdxR3(w)uwdxR3wdx=0(2.5)No.1ZENG Ying,et al.:Global Regularity for the 3D Tropical Climate Model83and12ddt(t)2L2+(t)2L2R3(u )dx R3(w)dx=0.(2.6)Summing up(2.4),(2.5)and(2.6),we obtain12ddt(3u2L2+w2L2+2L2)+h3u2L2+1w2L2+2L2=R3(u )u 23u(t)dx+R3|u|1u 23u(t
22、)dx+R3 (w w)23u(t)dx+R3(u )w w(t)dx+R3(w )u wdx+R3 wdx+R3(u )dx+R3(w)dx:=8i=1Ii.(2.7)It is the position to estimate the terms on the right hand of(2.7).First,using the H olderinequality and Gagliardo-Nirenberg inequality,we have|I1|=?3k,l=1R33ukkul3uldx?=?2k=13l=1R33ukkul3uldx 3l=1R3(1u1+2u2)3ul3uld
23、x?=?2k=13l=1R33ukulk3uldx?+2?2k=13l=1R3uk3ul3kuldx?:=I11+I12,(2.8)where we use the fact 3u3=1u1 2u2.Next,we estimate I11(t)and I12(t).For 3,one has|I11|2k=13l=1R3|ul|3uk|21|3uk|31|k3ul|dx2k=13l=1ul|3uk|21L1|3uk|31L2(1)3k3ulL24|u|12|3u|2L2+12h3u2L2+C3u2L2.(2.9)Regarding I12(t),applying the H older an
24、d Young inequalities,we get for 3 that|I12|4|u|12|3u|2L2+12h3u2L2+C3u2L2.(2.10)For I2(t),applying integration by parts,we obtainI2=R3|u|1u 23u(t)dx=R3|u|1|3u(t)|2dx 2R33|u(t)|23|u(t)|1dx|u|123u2L24(1)(+1)23|u|+122L2.(2.11)84MATHEMATICA APPLICATA2024With respect to I3(t),when 32,using integration by
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 具有 部分 粘性 阻尼 三维 热带 气候 模型 全局 正则
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【自信****多点】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【自信****多点】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。