关于具有不确定性凸半无限规划的近似解.pdf
《关于具有不确定性凸半无限规划的近似解.pdf》由会员分享,可在线阅读,更多相关《关于具有不确定性凸半无限规划的近似解.pdf(14页珍藏版)》请在咨信网上搜索。
1、应用数学MATHEMATICA APPLICATA2024,37(1):200-213On Approximate Solutions for ConvexSemi-infinite Programming withUncertaintySU Ke(苏珂)1,2,YU Mengyao(于梦瑶)1,2,LIN Yumeng(林雨萌)1,2(1.College of Mathematics and Information Science,Hebei University,Baoding 071000,China;2.Hebei Key Laboratory of Machine Learning
2、andComputational Intelligence,Baoding 071000,China)Abstract:In this paper,we consider the approximate solutions(also called-solutions)for semi-infinite optimization problems that objective function and constraint functionswith uncertain data are all convex,then the robust counterpart of convex semi-
3、infiniteprogram is established and the approximate solutions are considered.Moreover,the robustnecessary condition and robust sufficient theorems are obtained.Additional,the Lagrangianduality results in the sense of the approximate solution are given by the robust optimizationapproach under the prop
4、osed cone constraint qualification.Key words:Convex function;Approximate solution;Dual theorem;Semi-infinite;UncertaintyCLC Number:O224AMS(2010)Subject Classification:90C30;65K05Document code:AArticle ID:1001-9847(2024)01-0200-141.IntroductionFocus on the following convex semi-infinite programming(C
5、SIP):(CSIP)minw(x)s.t.ht(x)0,t T,(1.1)where w(x):Rn R and ht(x):Rn R(t T)are convex and continuous functions,and Tis an infinite set.We call the problem(CSIP)linear semi-infinite programming,if w(x),ht(x)are all linear functions.Dual theory plays an important role in the study of semi-infinite progr
6、amming problems.Goberna1summarized the publications on semi-infinite linear programming(SILP),whichaims to identify the most active research areas and the major trends in applications.Detailedbibliographical introduction on(SILP)and their extensions are contained in 2.The dualproblems of convex semi
7、-infinite programming are discussed in 3-4.All the above semi-infinite programming assume the data in the model are determinate.But in real life,theReceived date:2023-01-02Foundation item:Supported by the Natural Science Foundation of Hebei Province(A2022201002),the Innovative Funding Program of Heb
8、ei Province(CXZZSS2023008)Biography:SU Ke,female,Han,Hebei,professor,major in mathematics.No.1SU Ke,et al.:On Approximate Solutions for Convex Semi-infinite Programming201information of optimization problems sometimes are uncertain,wrong or lacking,so it isimportant to discuss the dual problem under
9、 uncertain set5.Ben-Tal and Nemirovski et al.6proposed a deterministic framework for the mathematicalprogramming under uncertain data.The robust optimization methods for linear programmingproblems and convex optimization problems under uncertain data are discussed successfullyby Ghaoui7.In considera
10、tion of the uncertain data,Goberna8used robust duality theoryto deal with the convex programming problems.The research on the robust correspondencebetween dual problems and uncertain convex programming9shows that the value of therobust counterpart of primal problem is equal to the value of the optim
11、istic counterpart ofthe dual primal(i.e.,primal worst equals dual best).Convex programming,in which the constraint functions are finite with uncertain data,can be summarized as follows10:(UCP)minw(x)s.t.hi(x,ui)0,i=1,m,(1.2)where hi(x,ui):Rn Rm R(i=1,m)are convex and ui Ui Rm(i=1,m)are uncertain par
12、ameters.In recent years,many scholars have studied the robust convex optimization problem withdata uncertainty11.Several selected topics in robust convex optimization are overviewed in12.Jeyakumar and LI13proved Lagrangian strong duality theorem,then defined a newrobust characteristic cone,and gave
13、the necessary and sufficient conditions for the existenceof strong duality.The optimistic correspondence is proposed by 6.SUN et al.14studied therobust quasi-approximate optimal solution for a class of nonsmooth semi-infinite programmingwith uncertain data.Lee and Lee15focused on the approximate sol
14、ution to robust convex optimization prob-lem,and established the duality theorem of Wolfe type dual problem with finite constraintfunction.Then Lee and Lee16defined the-solution of the robust semi-infinite optimiza-tion problem.Based on the closed convex cone,an approximate weak duality theorem and
15、astrong duality theorem for the original problem and its Wolfe dual problem are established.Then,ZENG et al.17presented some modified robust solutions for fractional semi-infiniteprogramming with uncertain information.Lagrangian dual with finite constraints is studiedin 13.It shows strong dual prope
16、rty holds(i.e.,=0)under the robust characteristic coneas follows:M=uiUi,i0epi(mi=1ihi(,ui),where M is closed and convex,and(mi=1ihi(,ui)denotes the conjugate function of(mi=1ihi(,ui).With uncertain constraint conditions,(CSIP)can be summarized as follows:(UCSIP)minw(x)s.t.ht(x,ut)0,t T,(1.3)where ht
17、(x,ut):RnRm R(for any t T)are continuous convex functions,and ut Rm(for any t T)are uncertain parameters,which belong to some convex compact sets Ut Rm.202MATHEMATICA APPLICATA2024Define the uncertain set-valued mapping U(t):T Rmas U(t):=Ut(for all t T).And u U implies that u is an element of U,i.e.
18、,u(t):T Rmand u(t):=ut Ut(for allt T).The Lagrangian dual of(UCSIP)is given by(LDUCSIP)maxtinfxRnw(x)+tTtht(x,ut)s.t.t 0.(1.4)The robust counterpart of(UCSIP)can be summarized as follows:(RCSIP)minw(x)s.t.ht(x,ut)0,t T,ut Ut.(1.5)The best possible robust feasible solution is the one that solves the
19、optimization problem(RCSIP).(RCSIP)is called the robust counterpart of the original uncertain problem(UCSIP).Motivated by the above,in this paper,we consider the approximate solutions(i.e.,0)for robust semi-infinite convex programming.By using the robust optimization method,therobust necessary condi
20、tion and sufficient conclusions of(RCSIP)under the closed convex coneconstraints are established,denote the cone as follows:=utUt,t0,tTepi(tTtht(,ut),(1.6)where(tTtht(,ut)is the conjugate function of(tTtht(,ut).Moreover,under the closedconvex cone constraint qualification,between the primal problem
21、and Lagrangian dualproblem,we prove that an approximate weak duality result and a strong duality theorem.Denote the optimistic counterpart of(LDUCSIP)as follows:(OLDCSIP)maxtinfxw(x)+tTtht(x,ut)s.t.t 0,t T,ut Ut,x Rn.(1.7)Denote the Lagrangian dual of the robust counterpart(RCSIP)as follows:(LDRCSIP
22、)maxtinfxsuputw(x)+tTtht(x,ut)s.t.t 0,t T,ut Ut,x Rn.(1.8)We present the approximate weak dual theorem and strong dual theorem of(LDRCSIP)in Section 4.Given the feasible set of(UCSIP)as follows:F:=x Rn|ht(x,ut)0,t T,ut Ut.(1.9)Let 0.We call b x an-solution of(RCSIP),if b x satisfiesw(x)w(b x),for an
23、y x F.The rest of the paper is organized as following.We introduce some preliminaries andnotations in Section 2.Some conditions for the existence are discussed in Section 3.Ap-proximate weak and strong theorems are given in Section 4.In Section 5,we summarize thecontent of this article.No.1SU Ke,et
24、al.:On Approximate Solutions for Convex Semi-infinite Programming2032.Notations and PreliminariesIn order to show our conclusions,we recall some symbols and preliminaries.Rnis repre-sented as the n-dimension Euclidean space,R+as the nonnegative quadrant of R,the graphof set U as gphU:=(t,ut)|ut Ut,t
25、 T,clA,coA,and coneA as the closure,the convexhull,and the conical hull severally.Let w(x):RneR,whereeR is an extended real set,denoted aseR=,+.If for all x Rn,w(x)and exists x Rnsuch thatw(x)R,then w(x)is said to be proper.Definition 2.1Let A be a closed and convex set in Rn.Call A:Rn R+theindicato
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 关于 具有 不确定性 无限 规划 近似
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【自信****多点】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【自信****多点】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。