2017年江苏省常州市中考数学试卷(详细解析).doc
《2017年江苏省常州市中考数学试卷(详细解析).doc》由会员分享,可在线阅读,更多相关《2017年江苏省常州市中考数学试卷(详细解析).doc(24页珍藏版)》请在咨信网上搜索。
2017年江苏省常州市中考数学试卷 满分:120分 一、选择题(每小题3分,共10小题,合计30分) 1.(2017常州,1,2分)-2的相反数是( ) A.- B. C.±2 D.2 答案:D 解析:数a的相反数是-a,所以-2的相反数是2,故选D. 2.(2017常州,2,2分)下列运算正确的是( ) A.m·m=2m B.(mn)3=mn3 C.(m2)3=m6 D.m6÷a3=a3 答案:C, 解析:m·m=2m2, (mn)3=m3n3, (m2)3=m6, m6÷a3=a4,故正确的是C,故选C. 3.(2017常州,3,2分)右图是某个几何体的三视图,则该几何体是( ) A.圆锥 B.三棱柱 C.圆柱 D.三棱锥 答案:B 解析:由三视图确定几何体,从三视图可以确定此几何体为三棱柱,故选B. 4.(2017常州,4,2分)计算+的结果是( ) A. B. C. D.1 答案:D 解析:本题考查分式的加法,同分母分式,分子相加减,原式==1,故选D.[来源:Z+xx+k.Com] 5.(2017常州,5,2分)若3x>-3y,则下列不等式中一定成立的是( ) A.x+y>0 B.x-y>0 C.x+y<0 D.x-y<0 答案:A 解析:不等式的两边都除以3得x>-y,移项得x+y>0,故选A. 6.(2017常州,6,2分)如图,已知直线AB、CD被直线AE所截,AB∥CD, ∠1=60°,则 ∠2的度数是( ) A.100° B.110° C.120° D.130° 答案:C 解析:∵AB∥CD, ∠1=60°,∴∠3=∠1=60°,所以∠2=180°-60°=120°,故选C . 7. (2017常州,7,2分)如图,已知矩形ABCD的顶点A、D分别落在x轴、y轴上,OD=2OA=6, AD:AB=3:1, 则点C的坐标是( ) A.(2,7) B.(3,7) C.(3,8) D.(4,8) 答案:A 解析:作BE⊥x轴于E,由题意知△ABE∽△DAO,因为OD=2OA=6,所以OA=3,由勾股定理得AD=3,因为AD:AB=3:1,所以AB=,所以BE=1,AE=2,由矩形的性质知,将点D向上平移一个单位,向右平移2个单位得到点C,所以点C的坐标为(2,7),故选A. 8.(2017常州,8,3分)如图,已知□ABCD的四个内角的平分线分别相交于点E、F、G、H,连接AC,若EF=2,FG=GC=5,则AC的长是( ) A.12 B.13 C.6 D.8 答案:B 解析:作AM⊥CH交CH的延长线于H,因为四条内角平分线围成的四边形EFGH为矩形,所以AM=FG=5,MH=AE=CG=5,所以CM=12,由勾股定理得AC=13,故选B. 二、填空题:(本大题共10小题,每小题2分,共20分) 9.(2017常州,9,2分)计算:|-2|+(-2)0= . 答案:3 解析:正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0,非零数的零次方都等于1,依此规则原式=2+1=3. 10.(2017常州,10,2分)若二次根式有意义,则实数x的取值范围是 . 答案:x≥2 解析:二次根式有意义需要满足被开方数为非负数,所以x-2≥0,解得x≥2. 11.(2017常州,11,2分)肥皂泡的泡壁厚度大约是0.0007mm,则数据0.0007用科学计数法表示为 . 答案:7×10-4 解析:用科学记数法表示较小的数,0.0007=7×10-4. 12.(2017常州,12,2分)分解因式:ax2-ay2= . 答案:a(x+y)(x-y) 解析:原式=a(x2-y2)=a(x+y)(x-y). 13.(2017常州,13,2分)已知x=1是关于x的方程ax2-2x+3=0的一个根,则a= . 答案:-1 解析:将x=1代入方程ax2-2x+3=0得a-2+3=0,解得a=-1. 14.(2017常州,14,2分)已知圆锥的底面圆半径是1,母线长是3,则圆锥的侧面积是 . 答案:3π 解析:圆锥的侧面积=×扇形半径×扇形弧长=×l×(2πr)=πrl=π×1×3=3π.设圆锥的母线长为l,设圆锥的底面半径为r,则展开后的扇形半径为l,弧长为圆锥底面周长(2πR).我们已经知道,扇形的面积公式为:S=×扇形半径×扇形弧长=×l×(2πr)=πrl.即圆锥的侧面积等于底面半径与母线和π的乘积.π×1×3=3π. 15.(2017常州,15,2分)如图,已知在△ABC中,DE是BC的垂直平分线,垂足为E,交AC于点D,若AB=6,AC=9,则△ABD的周长是 . [来源:学科网] 答案:15 解析:因为DE垂直平分BC,所以DB=DC,所以△ABD的周长=AD+AB+BD=AB+AD+CD=AB+AC=6+9=15. 16.(2017常州,16,2分)如图,四边形ABCD内接于⊙O,AB为⊙O的直径,点C为弧BD的中点.若∠DAB=40°,则∠ABC= °. 答案:70° 解析:连接AC,OC,因为C是弧BD的中点,∠DAB=40°,所以∠CAB=20°,所以∠COB=40°,由三角形内角和得∠B=70°.. 17.(2017常州,17,2分)已知二次函数y= ax2+bx-3自变量x的部分取值和对应函数值y如下表: X … -2 -1 0 1 2 3 … y … 5 0 -3 -4 -3[来源:Z#xx#k.Com] 0 … 则在实数范围内能使得y-5>0成立的x的取值范围是 . 答案:x>4或x<-2 解析:将点(-1,0)和(1,-4)代入y= ax2+bx-3得,解得:,所以该二次函数的解析式为y= x2-2x-3,若y>5,则x2-2x-3>5, x2-2x-8>0,解一元二次方程x2-2x-8=0,得x=4或x=-2.根据函数图象判断y-5>0成立的x的取值范围是x>4或x<-2. 18.(2017常州,18,3分)如图,已知点A是一次函数y=x(x≥0)图像上一点,过点A作x轴的垂线l,B是l上一点(B在A上方),在AB的右侧以AB为斜边作等腰直角三角形ABC,反比例函数(k)0)的图像过点B、C,若△OAB的面积为6,则△ABC的面积是 . 答案:3 解析: 如图,过C作CD⊥y轴于D,交AB于E, ∵AB⊥x轴, ∴CD⊥AB, ∵△ABC是等腰直角三角形, ∴BE=AE=CE, 设AB=2a,则BE=AE=CE=a, 设A(x,x),则B(x,),C(x+a,), ∴ S△OAB=AB⋅DE=×2ax=6① =2a+x② =a+x ③, 由①得:ax=6, 由②得:2k=4ax+x2, 由③得:2k=2a(a+x)+x(a+x), 2a2+2ax+ax+x2=4ax+x2, 2a2=ax=6, a2=3, ∵S△ABC=AB×CE=×2aa=a2=3. 三、解答题:本大题共6个小题,满分60分. 19.(2017常州,19,6分)先化简,再求值:(x+2) (x-2)-x (x-1),其中x=-2. 思路分析:先化简,再代入求值. 解:原式=x2-4-x2+x=x-4,当x=-2时,原式=-2-4=-6. 20.(2017常州,20,8分)解方程和不等式组: (1)=-3 (2) 思路分析:(1)解分式方程,检验方程的解是否为增根; (2)分别解两个不等式再确定不等式组的解集. 解:(1)去分母得2x-5=3x-3-3(x-2),去括号移项合并同类项得,2x=-8,解得x=-4,经检验x=4是原方程的根,所以原方程的根是x=4; (2)解不等式①得x≥-3,解不等式②得x<1,所以不等式组的解集是-3≤x<1. 21.(2017常州,21,8分)为了解某校学生的课余兴趣爱好情况,某调查小组设计了“阅读”“打球”“书法”和“其他”四个选项,用随机抽样的方法调查了该校部分学生的课余兴趣爱好情况(每个学生必须选一项且只能选一项),并根据调查结果绘制了如下统计图: 根据统计图所提供的信息,解答下列问题: (1)本次抽样调查中的样本容量是 . (2)补全条形统计图; (3)该校共有2000名学生,请根据统计结果估计该校课余兴趣爱好为“打球”的学生人数. 思路分析:(1)利用爱好阅读的人数与占样本的百分比计算,30÷30%=100; (2)其他100×10%=10人,打球100-30-20-10=40人; (3)利用样本中的数据估计总体数据. 解:(1)100; (2)其他10人,打球40人; (3)2000×=800,所以估计该校课余兴趣爱好为“打球”的学生为数为800人. 22.(2017常州,22,8分)一只不透明的袋子中装有4个大小、质地都相同的乒乓球,球面上分别标有数字1、2、3、4. (1)搅匀后从中任意摸出1个球,求摸出的乒乓球球面上数字为1的概率; (2)搅匀后先从中任意摸出1个球(不放回),再从余下的3个球中任意摸出1个球,求2次摸出的乒乓球球面上数字之和为偶数的概率. 思路分析:(1)列举法求概率; (2)画树状图法求概率. 解:(1)从4个球中摸出一个球,摸出的球面数字为1的概率是; (2)用画树状图法求解,画树状图如下: 从树状图分析两次摸球共出现12种可能情况,其中两次摸出的乒乓球球面上数字之和为偶数的概率为:=. 23.(2017常州,23,8分)如图,已知在四边形ABCD中,点E在AD上,∠BCE=∠ACD=90°,∠BAC=∠D,BC=CE. (1)求证:AC=CD; (2)若AC=AE,求∠DEC的度数. 思路分析:(1)证明△ABC≌△DEC; (2)由∠EAC=45°通过等腰三角形的性质求解. 解:(1)证明:∵∠BCE=∠ACD=90°,∴∠ACB=∠DCE, 又∵∠BAC=∠D,BC=CE,∴△ABC≌△DEC,∴AC=CD. (2)∵∠ACD=90°,AC=CD,∴∠EAC=45°, ∵AE=AC∴∠AEC=∠ACE=×(180°-45°)=67.5°, ∴∠DEC=180°-67.5°=112.5°. 24.(2017常州,24,8分)某校计划购买一批篮球和足球,已知购买2个篮球和1个足球共需320元,购买3个篮球和2个足球共需540元. (1)求每个篮球和每个足球的售价; (2)如果学校计划购买这两种共50个,总费用不超过5500元,那么最多可购买多少个足球? 思路分析:(1)根据等量关系列方程组求解; (2)根据不等关系列不等式求解. 解:(1)解设每个篮球售价x元,每个足球售价y元,根据题意得: ,解得: 答:每个篮球售价100元,每个足球售价120元. (2)设学校最多可购买a个足球,根据题意得 100(50-a)+120a≤5500,解得:a≤25. 答:学校最多可购买25个足球. 25.(2017常州,25,8分)如图,已知一次函数y=kx+b的图像与x轴交于点A,与反比例函数y=(x<0)的图像交于点B(-2,n),过点B作BC⊥x轴于点C,点D(3-3n,1)是该反比例函数图像上一点. m的值; (2)若∠DBC=∠ABC,求一次函数y=kx+b的表达式. 思路分析:(1)将点B、D坐标代入反比例函数解析式求解m的值; (2)先求BD的解析式,再由线段垂直平分线的性质求得点A坐标,最后求AB的解析式. 解:(1)把B(-2,n),D(3-3n,1)代入反比例函数y=得, 解得:,所以m的值为-6. (2)由(1)知B、D两点坐标分别为B(-2,3),D(-6,1), 设BD的解析式为y=px+q,所以,解得 所以一次函数的解析式为y=x+4,与x轴的交点为E(-8,0) 延长BD交x轴于E,∵∠DBC=∠ABC,BC⊥AC,∴BC垂直平分AC, ∴CE=6, ∴点A(4,0),将A、B点坐标代入y=kx+b得 ,解得,所以一次函数的表达式为y=-x+2. 26.(2017常州,26,10分)如图1,在四边形ABCD中,如果对角线AC和BD相交并且相等,那么我们把这样的四边形称为等角线四边形. (1)①在“平行四边形、矩形、菱形”中, 一定是等角线四边形(填写图形名称); ②若M、N、P、Q分别是等角线四边形ABCD四边AB、BC、CD、DA的中点,当对角线AC、BD还需要满足 时,四边形MNPQ是正方形; ⑵如图2,已知△ABC中,∠ABC=90°,AB=4,BC=3,D为平面内一点. ② 若四边形ABCD是等角线四边形,且AD=BD,则四边形ABCD的面积是 ; ②设点E是以C为圆心,1为半径的圆上的动点,若四边形ABED是等角线四边形,写出四边形ABED面积的最大值,并说明理由. 思路分析:(1)①矩形是对角线相等的四边形; ②四边形的中点四边形是平行四边形,等角线四边形的中点四边形是菱形,当对角线AC、BD互相垂直时四边形MNPQ是正方形; ⑵①根据题意画出图形,根据图形分析确定DF垂直平分AB,从而计算面积SABED=S△ABD+S△BCD; ②如图四边形ABED面积的最大值时点E在直线AC上,点D是以AE为斜边的等腰直角三角形的直角顶点,进而求得四边形ABED面积的最大值. 解:(1)①矩形;②AC⊥BD; ⑵①∵∠ABC=90°,AB=4,BC=3,∴BD=AC=5, 作DF⊥AB于F,∵AD=BD,∴DF垂直平分AB, ∴BF=2,由勾股定理得DF=, 由题意知SABED=S△ABD+S△BCD=×AB×DF+×BC×BF=×4×+×3×2=2+3;[来源:Zxxk.Com] ②如图3中,设AE与BD相交于点Q,连接CE, 作于H,于G.则,, 四边形ABED是等角线四边形, , , 即, 当G、H重合时,即时,等号成立, , , 即线段AE最大时,四边形ABED的面积最大, , , , 的最大值为6, 当A、C、E共线时,取等号, 四边形ABED的面积的最大值为 27.(2017常州,27,10分)如图,在平面直角坐标系xOy中,已知二次函数y=-x2+bx的图像过点A(4,0),顶点为B,连接AB、BO. (1)求二次函数的表达式; (2)若C是BO的中点,点Q在线段AB上,设点B关于直线CP的对称点为B′,当△OCB′为等边三角形时,求BQ的长度; (3)若点D在线段BO上,OD=2BD,点E、F在△OAB的边上,且满足△DOF与△DEF全等,求点E的坐标. 思路分析:(1)将A点坐标代入y=-x2+bx求得二次函数的表达式; (2)根据题意画出图形,根据图形分析,若△OCB′为等边三角形,则∠OCB′=∠QCB′=∠QCB=60°,由∠B=90°,根据特殊三角函数值求得BQ的长; (3)按点F在OB上和点B在OA上进行讨论确定点E的位置,当点F在BA上,点E与点A重合时△DOF与△DEF全等;当F在OA上,DE∥AB时△DOF与△DEF全等,点O关于DF的对称点落在AB上时△DOF与△DEF全等. 解:(1)将A(4,0)代入y=-x2+bx得,-×42+b×4=0,解得b=2, 所以二次函数的表达式为y=-x2+2x; (2)根据题意画出图形,二次函数y=-x2+2x的顶点坐标为B(2,2),与两坐标轴的交点坐标为O(0,0)、A(4,0).此时OB=2,BC=,若△OCB′为等边三角形,则∠OCB′=∠QCB′=∠QCB=60°,因为∠B=90°,所以tan∠QCB=QB:CB=,所以QB=; (3) ①当点F在OB上时,如图,当且仅当DE∥OA,即点E与点A重合时△DOF≌△FED,此时点E的坐标为E(4,0); ②点F在OA时,如图DF⊥OA,当OF=EF时△DOF≌△DEF,由于OD=2BD,所以点D坐标为(,),点F坐标为(,0),点E坐标为(,0); 点F在OA时,如图点O关于DF的对称点落在AB上时,△DOF≌△DEF,此时OD=DE=2BD=,BE=,作BH⊥OA于H,EG⊥OA于G,由相似三角形的性质求得HG=,所以点E坐标为(2+,2-). ②如图3,过D作轴于F,过D作轴,交AB于E,连接EF,过E作轴于G, , , , , , , ,, , 同理可得:, , ,, 的坐标为; 综上满足条件的点E的坐标为(4,0)、(,0)、(2+,2-).(,) 28.(2017常州,28,10分)如图,已知一次函数y=-x+4的图像是直线l,设直线l分别与y轴、x轴交于点A、B. (1)求线段AB的长度; (2)设点M在射线AB上,将点M绕点A按逆时针方向旋转90°到点N,以点N为圆心,NA的长为半径作⊙N. ①当⊙N与x轴相切时,求点M的坐标; ②在①的条件下,设直线AN与x轴交于点C,与⊙N的另一个交点为D,连接MD交x轴于点E.直线m过点N分别与y轴、直线l交于点P、Q,当△APQ与△CDE相似时,求点P的坐标. 思路分析:(1) 求A、B两点坐标,由勾股定理求得AB的长度; (2)①根据题意画出图形,根据△AOB∽△NHA,△HAN≌△FMA计算出线段FM与OF的长; ②分点P位于y轴负半轴上和点P位于y轴正半轴上两种情况进行分析,借助于相似三角形的对应线段比等于相似比列方程求得交点Q坐标,再将点Q坐标代入AB及NP解析式求得交点P的坐标. 解:(1)函数y=-x+4中,令x=0得y=4,令y=0得,x=3, 所以A(0,4),B(3,0).AB==5. (2)①由图1知,当⊙N与x轴相切于点E时,作NH⊥y轴于H,则四边形NHOE为矩形,HO=EN=AM=AN,∵∠HAN+∠OAB=90°,∠HNA+∠HAN=90°,∴∠OAB=∠HAN,因为AM⊥AN,所以△AOB∽△NHA ∴==,设AH=3x,则HN=4x,AN=NE=OH=5x, ∵OH=OA+AH,∴3x+4=5x, ∴x=2, ∴AH=6,HN=8,AN=AM=10. ∵AM=AN,∠OAB=∠HAN,∴Rt△HAN≌Rt△FMA, ∴FM=6,AF=8,OF=4, ∴M(6,-4). ②如图2,由①知, ,, , 设直线, 把和代入得:, 计算得出:, 直线DM的解析式为:, 直线DM交x轴于E, 当时,, , , 由①知:与x轴相切,切点为G,且, 与切点G重合, , 与相似时,顶点C必与顶点A对应, 分两种情况: i)当时,如图2,, , , , , , , , 连接BN, , , , , , , , , 中,, , , , , , , , , , 设,,则, , , ,, , 同理易得:直线NQ的解析式:, ; 当时,如图3, , , , , , 与Q重合, , , ; 综上所述,与相似时,点P的坐标的坐标或- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2017 江苏省 常州市 中考 数学试卷 详细 解析
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【天****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【天****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【天****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【天****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文