职高数学教案第一册.doc
《职高数学教案第一册.doc》由会员分享,可在线阅读,更多相关《职高数学教案第一册.doc(87页珍藏版)》请在咨信网上搜索。
科目:数学教案 (第一册) 初中知识复习(1-4) 第一节 乘法公式、因式分解 重点:和(差)的立方公式,立方和(差)公式及应用,十字相乘法,分组分解法,试根法 难点:公式的灵活运用,因式分解 教学过程: 一、 乘法公式 引入:回顾初中常用的乘法公式:平方差公式,完全平方公式,(从项的角度变化)那三数和的平方公式呢? (从指数的角度变化)看看和与差的立方公式是什么?如, 能用学过的公式推导吗?(平方―――立方) ···················① 那呢,同理可推。那能否不重复推导,直接从①式看出结果?将中的b换成-b即可。()▲这种代换的思想很常用,但要清楚什么时候才可以代换 ············符号的记忆,和――差 从代换的角度看 问:能推导立方和、立方差公式吗?即( )( )= 由①可知,······② 立方差呢?②中的b代换成-b得出: ▲符号的记忆,系数的区别 例1:化简 法1:平方差――立方差 法2:立方和――立方差 (2)已知求证: ▲注意观察结构特征,及整体的把握 二、因式分解:将一个多项式化成几个整式的积的形式,与乘法运算是互逆变形。初中学过的方法有:提取公因式法,公式法(平方差、完全平方、立方和、立方差等) (1)十字相乘法 试分解因式: 要将二次三项式x2 + px + q因式分解,就需要找到两个数a、b,使它们的积等于常数项q,和等于一次项系数p, 满足这两个条件便可以进行如下因式分解,即 x2 + px + q = x2 +(a + b)x + ab = (x + a)(x + b). 用十字交叉线表示: 1 a 1 b a + b (交叉相乘后相加) 若二次项的系数不为1呢?,如: 如何处理二次项的系数?类似分解:1 -3 2 -1 -6 + -1 = -7 整理:对于二次三项式ax2+bx+c(a≠0),如果二次项系数a可以分解成两个因数之积,即a=a1a2,常数项c可以分解成两个因数之积,即c=c1c2,把a1,a2,c1,c2排列如下: a1 +c1 a2 +c2 a1c2 + a2c1 = a1c2 + a2c1 按斜线交叉相乘,再相加,得到a1c2+a2c1,若它正好等于二次三项式ax2+bx+c的一次项系数b,即a1c2+a2c1=b,那么二次三项式就可以分解为两个因式a1x+c1与a2x+c2之积,即 ax2+bx+c=(a1x+c1)(a2x+c2)。〔按行写分解后的因式〕 十字相乘法关键:(1)看两端,凑中间;(2)分解后的因式如何写(3)二次项系数为负时,如何简化 例2:因式分解:(1) (2) (3) (2)分组分解法 分解,观察;无公因式,四项式,则不能用提公因式法,公式法及十字相乘法 两种方法 适当分组后提出公因式,各组间又出现新的公因式,····叫分组分解法 ▲如何适当分组是关键(尝试,结构),分组的原则,目的是什么?分组后可以提取公因式,或;利用公式 练习:因式分解(1) (2) (3) (试根法,竖式相除) 归纳:如何选择适当的方法 作业: 将下列各式分解因式 (1); (2); (3);(4) (5); (6);(7) (8);(9) 第二节 二次函数及其最值 重点:二次函数的三种表示形式,韦达定理,给定区间的最值问题 难点:给定区间的最值问题 教学过程: 一、 韦达定理(二次方程根与系数之间的关系) 二次方程什么时候有根(判别式0时),此时由求根公式得,,求出了具体的根,还反映了根与系数的关系。那可以不解方程,直接从方程中看出两根和(积)与系数的关系吗, 反过来,若满足,那么一定是的两根,即韦达定理的逆定理也成立。 作用:(1)已知方程,得出根与系数的关系 (2)已知两数,构造出以两数为根的一元二次方程(系数为1): 例1:是方程的两根,不解方程,求下列代数式的值; ① ② ③ 第一章 集合 §1.1 集合的概念 (5-6) 【教学目标】 知识目标: (1)理解集合、元素及其关系; (2)掌握集合的列举法与描述法,会用适当的方法表示集合. 能力目标: 通过集合语言的学习与运用,培养学生的数学思维能力. 【教学重点】 集合的表示法. 【教学难点】 集合表示法的选择与规范书写. 【教学设计】 (1)通过生活中的实例导入集合与元素的概念; (2)引导学生自然地认识集合与元素的关系; (3)针对集合不同情况,认识到可以用列举和描述两种方法表示集合,然后再对表示法进行对比分析,完成知识的升华; (4)通过练习,巩固知识. (5)依照学生的认知规律,顺应学生的学习思路展开,自然地层层推进教学. 【教学过程】 *新阶段学习导入语 介绍中职阶段学习数学的必要性,数学的学习内容、学习方法、学习特点等等. 同学们就要开始新的人生阶段了,很高兴可以和大家一起度过这段美好的时光.希望同学们可以通过自己不懈的努力,在毕业后能够找到一个合适的工作,能够独立生存,能够成为为家庭、为企业、为社会做出自我贡献的能工巧匠.当然要达到这样的目的需要你脚踏实地的认真的学做人、学做事,那么现在请让我们从学习开始…… 1.学习——旅程 学习是一段旅程,对知识的探求永无止境,而且这段旅程可以从任何时候开始!未来的成功在现在脚下! 2.老师——导游 与大家一起开始这一段新的旅程、一起分享学习中的快乐、一起体会成长与进步的滋味. 3.目的——运用 我们应当能够理解数学,而且通过运用数学进行沟通和推理,在现实生活中应用数学来解决问题,养成一种数学上的自信心理.请不要害怕学数学,每个人都可以根据自己的能力和实际需要学好自己的数学. 4.准备——必需品 轻松愉快的心情、热情饱满的精神、全力以赴的态度、踏实努力的行动、科学认真的方法、及时真诚的交流. *揭示课题 缤纷多彩的世界,众多繁杂的现象,需要我们去认识.将对象进行分类和归类,加强对其属性的认识,是解决复杂问题的重要手段之一.例如,按照使用功能分类存放物品,在取用时就十分方便. 这就是我们将要研究学习的1.1集合. *创设情景 兴趣导入 问题 某商店进了一批货,包括:面包、饼干、汉堡、彩笔、水笔、橡皮、果冻、薯片、裁纸刀、尺子.那么如何将这些商品放在指定的篮筐里? 归纳 面包、饼干、汉堡、果冻、薯片组成了食品集合,彩笔、水笔、橡皮、裁纸刀、尺子组成了文具集合. 而面包、饼干、汉堡、果冻、薯片、彩笔、水笔、橡皮、裁纸刀、尺子就是其对应集合的元素. *动脑思考 探索新知 概念 由某些确定的对象组成的整体叫做集合,简称集.组成集合的对象叫做这个集合的元素. 如大于2并且小于5的自然数组成的集合是由哪些元素组成? 表示 一般采用大写英文字母…表示集合,小写英文字母…表示集合的元素. 拓展 集合中的元素具有下列特点: (1) 互异性:一个给定的集合中的元素都是互不相同的; (2) 无序性:一个给定的集合中的元素排列无顺序; (3) 确定性:一个给定的集合中的元素必须是确定的. 不能确定的对象,不能组成集合.例如,某班跑得快的同学,就不能组成集合. 例1 下列对象能否组成集合: (1)所有小于10的自然数;(2)某班个子高的同学; (3)方程的所有解;(4)不等式的所有解. 类型 由方程的所有解组成的集合叫做这个方程的解集. 由不等式的所有解组成的集合叫做这个不等式的解集. 像方程的解组成的集合那样,由有限个元素组成的集合叫做有限集.像不等式x-2>0的解组成的集合那样,由无限个元素组成的集合叫做无限集. 像平面上与点O的距离为2 cm的所有点组成的集合那样,由平面内的点组成的集合叫做平面点集. 由数组成的集合叫做数集.方程的解集与不等式的解集都是数集. 所有自然数组成的集合叫做自然数集,记作. 所有正整数组成的集合叫做正整数集,记作或. 所有整数组成的集合叫做整数集,记作. 所有有理数组成的集合叫做有理数集,记作. 所有实数组成的集合叫做实数集,记作. 不含任何元素的集合叫做空集,记作.例如,方程x2+1=0的实数解的集合里不含有任何元素,所以这个解集就是空集 关系 元素是集合A的元素,记作(读作“属于A”), 不是集合A的元素,记作(读作“不属于A”). 集合中的对象(元素)必须是确定的.对于任何的一个对象,或者属于这个集合,或者不属于这个集合,二者必居其一. *运用知识 强化练习 练习1.1.1 *创设情景 兴趣导入 问题 不大于5的自然数所组成的集合中有哪些元素? 小于5的实数所组成的集合中有哪些元素? 解决 不大于5的自然数所组成的集合中只有0、1、2、3、4、5这6个元素,这些元素是可以一一列举的.而小于5的实数有无穷多个,而且无法一一列举出来,但元素的特征是明显的:(1) 集合的元素都是实数;(2)集合的元素都小于5. 归纳 当集合中元素可以一一列举时,可以用列举的方法表示集合;当集合中元素无法一一列举但元素特征是明显时,可以分析出集合的元素所具有的特征性质,通过对元素特征性质的描述来表示集合. *动脑思考 探索新知 集合的表示有两种方法: (1)列举法.把集合的元素一一列举出来,写在花括号内,元素之间用逗号隔开. 如不大于5的自然数所组成的集合可以表示为. (2)描述法.在花括号内画一条竖线,竖线的左侧写出集合的代表元素,竖线的右侧写出元素所具有的特征性质.如小于5的实数所组成的集合可表示为. 如果从上下文能明显看出集合的元素为实数,那么可以将省略不写.如不等式的解集可以表示为. 为了简便起见,有些集合在使用描述法表示时,可以省略竖线及其左边的代表元素,直接用中文来表示集合的特征性质.例如所有正奇数组成的集合可以表示为{正奇数}. *巩固知识 典型例题 例2 用列举法表示下列集合: (1)由大于且小于的所有偶数组成的集合;(2)方程的解集. 分析 这两个集合都是有限集.(1)题的元素可以直接列举出来;(2)题的元素需要解方程才能得到. 例3 用描述法表示下列各集合: (1)不等式的解集; (2)所有奇数组成的集合; (3)由第一象限所有的点组成的集合. 分析 用描述法表示集合关键是找出元素的特征性质.(1)题解不等式就可以得到不等式解集元素的特征性质;(2)题奇数的特征性质是“元素都能写成的形式”.(3)题元素的特征性质是“为第一象限的点”,即横坐标与纵坐标都为正数. *运用知识 强化练习 教材练习1.1.2 *巩固知识 典型例题 例4 用适当的方法表示下列集合: (1)方程x+5=0的解集;(2)不等式3x-7>5的解集; (3)大于3且小于11的偶数组成的集合;(4)不大于5的所有实数组成的集合; *运用知识 强化练习 选用适当的方法表示出下列各集合: (1)由大于10的所有自然数组成的集合; (2)方程的解集; (3)不等式的解集; (4)平面直角坐标系中第二象限所有的点组成的集合; (5)方程的解集; (6)不等式组的解集. 理论升华 整体建构 本次课重点学习了集合的表示法:列举法、描述法,用列举法表示集合,元素清晰明了;用描述法表示集合,元素特征性质直观明确. 因此表示集合时,要针对实际情况,选用合适的方法.例如,不等式(组)的解集,一般采用描述法来表示,方程(组)的解集,一般采用列举法来表示. *继续探索 活动探究 (1)阅读理解: 教材1.1,学习与训练1.1; (2)书面作业: 教材习题1.1,学习与训练1.1训练题; (3)实践调查: 探究生活中集合知识的应用 *教学后记 §1.2 集合之间的关系(7-8) 【教学目标】 知识目标: (1)掌握子集、真子集的概念; (2)掌握两个集合相等的概念; (3)会判断集合之间的关系. 能力目标: 通过集合语言的学习与运用,培养学生的数学思维能力. 【教学重点】 集合与集合间的关系及其相关符号表示. 【教学难点】 真子集的概念. 【教学设计】 (1)从复习上节课的学习内容入手,通过实际问题导入知识; (2)通过实际问题引导学生认识真子集,突破难点; (3)通过简单的实例,认识集合的相等关系; (4)为学生们提供观察和操作的机会,加深对知识的理解与掌握. 教学过程 *复习知识 揭示课题 前面学习了集合的相关问题,试着回忆下面的知识点: 1.集合 由某些确定的对象组成的整体. 元素 组成集合的对象. 2.常用数集有哪些?用什么字母表示? 3.集合的表示法 (1)列举法:在花括号内,一一列举集合的元素; (2)描述法:{代表元素|元素所具有的特征性质}. 4.元素与集合之间有属于或不属于的关系. 完成下面的问题: 用适当的符号 “”或“”填空: (1) 0 Æ; (2) 0 N; (3) R; (4) 0.5 Z; (5) 1 {1,2,3}; (6) 2 {x|x<1}; (7)2 {x|x=2k+1, kZ}. 那么集合与集合之间又有什么关系呢? *创设情景 兴趣导入 问题 1.设表示我班全体学生的集合,表示我班全体男学生的集合,那么,集合与集合之间存在什么关系呢? 2.设={数学,语文,英语,计算机应用基础,体育与健康,物理,化学}, N ={数学,语文,英语,计算机应用基础,体育与健康},那么集合与集合N之间存在什么关系呢? 3.自然数集Z与整数集N之间存在什么关系呢? 归纳 当集合的元素肯定是集合的元素时称集合包含集合.两个集合之间的这种关系叫做包含关系. *动脑思考 探索新知 概念 一般地,如果集合的元素都是集合的元素,那么称集合包含集合,并把集合叫做集合的子集. 表示 将集合包含集合记作或(读作“包含”或“包含于”). 可以用下图表示出这两个集合之间的包含关系. A BA 拓展 由子集的定义可知,任何一个集合都是它自身的子集,即. 规定:空集是任何集合的子集,即. *巩固知识 典型例题 例1 用符号“”、“”、“”或“”填空: (1) ;(2) ; (3) ; (4) ; (5) ; (6) . 分析 “” 与“”是用来表示集合与集合之间关系的符号;而“”与“”是用来表示元素与集合之间关系的符号.首先要分清楚对象,然后再根据关系,正确选用符号. *运用知识 强化练习 教材练习1.2.1 *动脑思考 探索新知 概念 如果集合B是集合A的子集,并且集合A中至少有一个元素不属于集合B,那么把集合B叫做集合A的真子集. 表示 记作 (或 ), 读作“A真包含B”(或“B真包含于A”). 拓展 空集是任何非空集合的真子集. 对于集合A、B、C,如果A B,B C,则A C . *巩固知识 典型例题 例2选用适当的符号“ ”或“ ”填空: (1){1,3,5}_ _{1,2,3,4,5}; (2){2}_ _ {x| |x|=2}; (3){1} _Æ. 例3 设集合,试写出的所有子集,并指出其中的真子集. 分析 集合中有3个元素,可以分别列出空集、含1个元素的集合、含2个元素的集合、含3个元素的集合. *运用知识 强化练习 练习1.2.2 *创设情景 兴趣导入 问题:设集合A={x|x2-1=0},B ={-1,1},那么这两个集合会有什么关系呢? 归纳:集合A与集合B中的元素完全相同,只是表示方法不同,我们就说集合A与集合B 相等,即A=B. *动脑思考 探索新知 概念:一般地,如果两个集合的元素完全相同,那么就说这两个集合相等. 表示:将集合与集合相等记作. 拓展 如果,同时,那么集合的元素都属于集合A,同时集合A的元素都属于集合,因此集合A与集合的元素完全相同,由集合相等的定义知. *巩固知识 典型例题 例4 判断集合与集合的关系. 分析 要通过研究两个集合的元素之间的关系来判断这两个集合之间的关系.. *运用知识 强化练习 判断集合A与B是否相等? (1) A={0},B= Æ; (2) A={…,-5,-3,-1,1,3,5,…},B={x| x=2m+1 ,mZ} ; (3) A={x| x=2m-1 ,mZ},B={x| x=2m+1 ,mZ}. *巩固知识 典型例题 例5 用适当的符号填空: ⑴ {1,3,5} {1,2,3,4,5,6}; ⑵ {3,-3}; ⑶ {2} { x| |x|=2 }; ⑷ 2 N; ⑸ a { a }; ⑹ {0} Æ; ⑺ . *运用知识 强化练习 用适当的符号填空: (1) ; (2) ; (3) ; (4) ; (5) ; (6) ; (7) ; (8) . *理论升华 整体建构 元素与集合关系:属于与不属于(、); 集合与集合关系:子集、真子集、相等(、 、=); *继续探索 活动探究 (1)阅读: 教材章节1.2;学习与训练1.2; (2)书写: 习题1.2,学习与训练1.2训练题; (3)实践:寻找集合和集合关系的生活实例. § 1.3集合的运算(1)(9-10) 【教学目标】 知识目标: (1)理解并集与交集的概念; (2)会求出两个集合的并集与交集. 能力目标: (1)通过数形结合的方法处理问题,培养学生的观察能力; (2)通过交集与并集问题的研究,培养学生的数学思维能力. 【教学重点】 交集与并集. 【教学难点】 用描述法表示集合的交集与并集. 【教学设计】 (1)通过生活中的实例导入交集与并集的概念,提高学习兴趣; (2)通过对实例的归纳,针对用“列举法”及“描述法”表示集合的运算的不同特征,采用由浅入深的训练,帮助学生加深对知识的理解; (3)通过学生的解题实践,总结比较,理解交集与并集的特征,完成知识的升华; (4)讲与练结合,教学要符合学生的认知规律. 【教学过程】 *揭示课题 1.3集合的运算 *创设情景 兴趣导入 问题1 在运动会上,某班参加百米赛跑的有4名同学,参加跳高比赛的有6名同学,既参加百米赛跑又参加跳高比赛的同学有2名同学,那么这些同学之间有什么关系? 问题2 某班第一学期的三好学生有李佳、王燕、张洁、王勇;第二学期的三好学生有王燕、李炎、王勇、孙颖,那么该班哪些同学连续两个学期都是三好学生? 用我们学过的集合来表示:A={李佳,王燕,张洁,王勇};B={王燕,李炎,王勇,孙颖};C={王燕,王勇}.那么这三个集合之间有什么关系? 问题3 集合A={直角三角形};B={等腰三角形};C={等腰直角三角形}.那么这三个集合之间有什么关系? 解决 通过上面的三个问题的思考,可以看出集合C中的元素是由既属于集合A又属于集合B中的所有元素构成的,也就是由集合、的相同元素所组成的,这时,将C称作是A与B的交集. *动脑思考 探索新知 一般地,对于两个给定的集合A、B,由集合、 的相同元素所组成的集合叫做与的交集,记作,读作“交”. 即. 集合A与集合B的交集可用下图表示为: 求两个集合交集的运算叫做交运算. *巩固知识 典型例题 例1 已知集合A,B,求A∩B. (1) A={1,2},B={2,3}; (2) A={a,b},B={c,d , e , f }; (3) A={1,3,5},B= Æ; (4) A={2,4},B={1,2,3,4}. 分析 集合都是由列举法表示的,因为 A∩B 是由集合A和集合B中相同的元素组成的集合,所以可以通过列举出集合的所有相同元素得到集合的交集. 例2设,,求. 分析 集合表示方程的解集;集合表示方程的解集.两个解集的交集就是二元一次方程组的解集. . 例3 设,,求. 分析 这两个集合都是用描述法表示的集合,并且无法列举出集合的元素.我们知道,这两个集合都可以在数轴上表示出来,如下图所示.观察图形可以得到这两个集合的交集. 由交集定义和上面的例题,可以得到: 对于任意两个集合A,B,都有 (1); (2),; (3); (4)如果. *运用知识 强化练习 练习1.3.1 *创设情景 兴趣导入 问题1 某班有团员34名,非团员11名,那么该班有多少名同学? 用我们学过的集合来表示:A={该班团员};B={该班非团员};C={该班同学}.那么这三个集合之间有什么关系? 问题2 某班第一学期的三好学生有李佳、王燕、张洁、王勇;第二学期的三好学生有王燕、李炎、王勇、孙颖,那么该班第一学年的三好学生都有哪些同学? 用我们学过的集合来表示:A={李佳,王燕,张洁,王勇};B={王燕,李炎,王勇,孙颖};C={李佳,王燕,张洁,王勇,李炎,孙颖}.那么这三个集合之间有什么关系? 问题3 集合A={锐角三角形};B={钝角三角形};C={斜三角形}.那么这三个集合之间有什么关系? 解决 通过上面的三个问题的思考,可以看出集合C中的元素是由集合A、B的所有元素所组成的,这时,将C称作是A与B的并集. *动脑思考 探索新知 一般地,对于两个给定的集合A、B,由集合、的所有元素所组成的集合叫做与的并集,记作(读作“A并B”). 即. 集合A与集合B的并集可用图形表示为: (1) A A A BA BA BA (2) (3) 求两个集合并集的运算叫做并运算. *巩固知识 典型例题 例4 已知集合A,B,求A∪B. (1) A={1,2},B={2,3}; (2) A={a , b},B={c, d , e , f }; (3) A={1,3,5},B= Æ; (4) A={2,4},B={1,2,3,4}. 分析 因为A∪B是由集合A和集合B的所有元素组成,当集合都是用列举法表示时,通过列举这两个集合的元素,可以得到并集,注意相同的元素只列举一次. 由并集定义和上面的例题,可以得到:对于任意的两个集合A与B,都有: (1); (2),; (3); (4)如果,那么. *运用知识 强化练习 练习1.3.2 *巩固知识 典型例题 例5 设,求,. 解 ; . 例6 设求,. 解 将集合、在数轴上表示: ,. *理论升华 整体建构 思考并回答下面的问题: 1.集合的并集和交集有什么区别?(含义和符号) 2.在进行集合的并运算和交运算时各自的特点是什么? 3.集合用列举法和描述法表示时进行运算需要注意的问题是什么? (1)由集合A和集合B的公共元素组成的集合叫做集合A与集合B的交集.由集合A和集合B的所有元素组成的集合叫做集合A与集合B的并集; (2)交运算是寻找两个集合都有的公共部分,并运算是将两个集合所有的元素进行合并. (3)列举法求解时要不重不漏,描述法求解时要利用好数轴并注意端点的处理. *继续探索 活动探究 (1)读书部分: 教材章节1.3; (2)书面作业: 学习与训练1.3; § 1.3集合的运算(2)(11-12) 【教学目标】 知识目标: (1)理解全集与补集的概念; (2)会求集合的补集. 能力目标: (1)通过数形结合的方法处理问题,培养学生的观察能力; (2)通过全集与补集问题的研究,培养学生的数学思维能力. 【教学重点】 集合的补运算. 【教学难点】 集合并、交、补的综合运算. 【教学设计】 (1)通过生活中的实例导入全集与补集的概念,提高学生的学习兴趣; (2)通过对实例的归纳,针对用“列举法”及“描述法”表示集合的运算的不同特征,采用由浅入深的训练,帮助学生加深对知识的理解; (3)通过学生的解题实践,总结比较,理解交集与并集的特征,完成知识的升华; (4)讲练结合,数形结合,教学要符合学生的认知规律. 【教学过程】 复习知识 揭示课题 前面学习了集合的并运算和交运算相关问题,试着回忆下面的知识点: 1.集合的并集和交集有什么区别?(含义和符号) 2.在进行集合的并运算和交运算时各自的特点是什么? 并运算是将两个集合所有的元素进行合并,交运算是寻找两个集合都有的共同元素. 3.集合用列举法和描述法表示时进行运算需要注意的问题是什么? 列举法求解时要不重不漏,描述法求解时要利用好数轴并注意端点的处理. 下面我们将学习另外一种集合的运算. *创设情景 兴趣导入 问题 某学习小组学生的集合为U={王明,曹勇,王亮,李冰,张军,赵云,冯佳,薛香芹,钱忠良,何晓慧},其中在学校应用文写作比赛与技能大赛中获得过金奖的学生集合为P={王明,曹勇,王亮,李冰,张军},那么没有获得金奖的学生有哪些? 解决 没有获得金奖的学生的集合为Q={赵云,冯佳,薛香芹,钱忠良,何晓慧}. 结论 可以看到,P 、Q都是U的子集,并且集合Q是由属于集合U但不属于集合P的元素所组成的集合. *动脑思考 探索新知 概念 如果一个集合含有我们所研究的各个集合的全部元素,在研究过程中,可以将这个集合叫做全集,一般用U来表示,所研究的各个集合都是这个集合的子集. 在研究数集时,常把实数集作为全集. 如果集合是全集U的子集,那么,由U中不属于的所有元素组成的集合叫做在全集U中的补集. 表示 集合在全集U中的补集记作 ,读作“在U中的补集”.即. 集合在全集U中的补集的图形表示,如下图所示: 求集合在全集U中的补集的运算叫做补运算. *巩固知识 典型例题 例1设,,. 求A的补集和B的补集. 分析 集合A的补集是由属于全集U而且不属于集合A的元素组成的集合. 例2 设U=R,,求A的补集。 分析 作出集合A在数轴上的表示,观察图形可以得到A的补集。 说明 通过观察图形求补集时,要特别注意端点的取舍. *运用知识 强化练习 教材 练习1.3.3 *巩固知识 典型例题 例3设全集,集合, .求 分析 这些集合都是用列举法表示的,可以通过列举集合的元素分别得到所求的集合. 例4 设全集U =R,集合A={x|x≤2},B={x|x>-4},求 , , ,. 分析 在理解集合运算的含义基础上,充分运用数轴的表示来进行求解. *理论升华 整体建构 思考并回答下面的问题: 1.什么是集合交运算?如何用符号表示?如何用图形表示? 什么是集合并运算?如何用符号表示?如何用图形表示? 什么是集合补运算?如何用符号表示?如何用图形表示? 2.在进行集合的交、并、补运算时各自的特点是什么? 3.集合用列举法和描述法表示时进行集合运算需要注意的问题是什么? *继续探索 活动探究 (1)读书部分: 教材章节1.3,学习与训练1.3; (2)书面作业: 学习与训练1.3训练题; (3)实践调查: 了解补集与全集在生活中的应用. *教学后记 § 1.4 充要条件(13-14) 【教学目标】 知识目标: 了解“充分条件”、“必要条件”及“充要条件”. 能力目标: 通过对条件与结论的研究与判断,培养思维能力. 【教学重点】 (1)对“充分条件”、“必要条件”及“充要条件”的理解. (2)符号“”,“”,“”的正确使用. 【教学难点】 “充分条件”、“必要条件”、“充要条件”的判定. 【教学设计】 (1)以学生的活动为主线.在条件与结论的关系的判断上,尽可能多的教给学生在独立尝试解决问题的基础上进行交流; (2)由易到难,具有层次性.从内涵上引导学生体会复合命题中条件和结论的关系. 【教学过程】 *揭示课题 1.4充要条件 *问题引领 深入探究 问题1.由条件 :是否可以推出结论 :是正确的? 2.由条件 :是否可以推出结论 :是正确的? 3. 由条件 : 是否可以推出结论 :是正确的,同时,由结论:是否可以推出条件 : 是正确的? *动脑思考 探索新知 概念 设条件和结论. (1)如果能由条件成立推出结论成立,则说条件是结论的充分条件,记作. 如问题1中,“条件:”是“结论:”的充分条件. (2)如果能由结论成立能推出条件成立,则说条件是结论的必要条件,记作. 如问题2中,“条件:”是“结论:”的必要条件. (3)如果,并且,那么是的充分且必要条件,简称充要条件,记作“”. 如问题3中,“条件:”是“结论:”的充要条件. *巩固知识 典型例题 例1 指出下列各组条件和结论中,条件 p与结论q的关系. (1)p:,q:; (2):,:. 说明 可以看到,由“p是q的充分条件”并不一定能够得到“p是q的必要条件”的结论,同样由“是的必要条件”也不一定能够得到“p是q的充分条件”的结论. 例2 指出下列各组结论中与的关系. (1):,:; (2):,:; (3):,:. *运用知识 强化练习 教材练习1.4 *巩固知识 典型例题 例3 确定下列各题中,p是q的什么条件? (1) p:(x-2)(x+1)=0 ,q:x-2=0; (2) p:内错角相等,q:两直线平行; (3) p:x=1,q:x2=1; (4) p:四边形的对角线相等,q:四边形是平行四边形. *理论升华 整体建构 1.正确把握条件和结论: p是q的充分条件,是把p看作条件,把q看作结论; p是q的必要条件,是把q看作条件,把p看作结论. 2.体会充分条件、必要条件与充要条件的判断: 充分条件的特征是条件不可少,有之必真,无之未必假. 必要条件的特征是条件不可少,无之必假,有之未必真. 充要条件的特征是有之必真,无之必假.重点和难点各是什么? *继续探索 活动探究 (1)读书部分: 教材章节1.4,学习与训练1.4; (2)书面作业: 教材练习题1.4,学习与训练1.4训练题; (3)实践调查: 了解充要条件在生活中的应用. *教学后记 第一章小结与复习 (15-16) 一、 结构图: 集合的基本运算 二、 知识要点: (一).元素与集合、集合与集合之间的关系: 1.元素与集合:“∈”或“”;说明:元素与集合之间是个体与整体的关系,不存在大小与相等的关系。 2.集合与集合之间的关系:(1)包含关系:子集:如果x∈A,则集合A是集合B的子集.记为.显然,任何集合是它自身的子集。即。 空集是任何集合的子集,即。 (2相等关系:对于任意两个集合A,B。如果同时那么集合A=B显然两个相等的集合元素完全相同。 (1) 真包含关系: 对于任意两个集合A,B,如果则称集合A是集合B的真子集.记为。对任意非空集合A,有。 (2) 运算关系:①交集: ②并集: ③补集:是在全集上进行的。一般地,设U是一个集合。则CA={x│x ①交集的运算性质: ②并集的运算性质: ③补集的运算性质: , ④分配律、结合律: , 3.求集合的子集个数问题,:如的子集的个数为:,真子集有个,非空子集有个,非空真子集有个。 4.空集Φ:空集是指不含任何元素的集合,记作Φ,{0}与Φ不同,{0}表示含有一个元素“0”的集合,Φ是不含任何元素的。Φ与{Φ}也不同,{Φ}表示含有一个元素“Φ”的集合它是一个以集合为元素的高一级集合。 空集有如下性质:(1)任何元素都不属于空集,即对任意元素a,都有a. (2)空集是任何集合的子集,空集是任何非空集合的真子集。 (3)空集与任何集合的交集仍为空集,空集与任意集合A的并集仍为集合A 5.熟记以下重要结论: 。 练习:教材 第一章检测题 第二章 不等式 §2.1不等式的基本性质(17-18) 【教学目标】 知识目标: ⑴ 理解不等式的基本性质; ⑵ 了解不等式基本性质的应用. 能力目标 : ⑴ 了解比较两个实数大小的方法; ⑵ 培养学生的数学思维能力和计算技能. 【教学重点】 ⑴ 比较两个实数大小的方法; ⑵ 不等式的基本性质. 【教学难点】 比较两个实数大小的方法. 【教学设计】 (1) 以实例引入知识内容,提升学生的求知欲; (2)抓住解不等式的知识载体,复习与新知识学习相结合; (3)加强知识的巩固与练习,培养学生的思维能力. 【教学过程】 *揭示课题 2.1不等式的基本性质 *创设情景 兴趣导入 问题 2006年7月12日,在国际田联超级大奖赛洛桑站男子110米栏比赛中,我国百米跨栏运动员刘翔以12秒88的成绩夺冠,并打破了尘封13年的世界记录12秒91,为我国争得了荣誉. 如何体现两个记录的差距? 解决 通常利用观察两个数的差的符号,来比较它们的大小.因为12.88−12.91= −0.03<0,所以得到结论:刘翔的成绩比世界记录快了0.03秒. 归 纳 可 以通过作差,来比较两个实数的大小. *动脑思考 探索新知 概念 对 于两个任意的实数a和b,有: ; ; . 因此,比较两个实数的大小,只需要考察它们的差即可. *巩固知识 典型例题 例1 比较与的大小. 例2 当时,比较 与的大小. *运用知识 强化练习 教材练习2.1.1 *动脑思考 探索新知 不等式的基本性质 性质1 如果,且,那么.(不等式的传递性) 性质2 如果,那么. 性质3 如果,,那么; 如果,,那么. *巩固知识 典型例题 例3 用符号“”或“”填空,并说出应用了不等式的哪条性质. (1) 设,- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 职高 数学教案 一册
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【丰****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【丰****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【丰****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【丰****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文