四边形综合经典难题说课讲解.doc
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 四边形 综合 经典 难题 讲解
- 资源描述:
-
此文档仅供收集于网络,如有侵权请联系网站删除 四边形压轴经典题型 1.已知:如图,在△ABC中,∠ACB=90o ,CD⊥AB于D,BF平分∠ABC,且与CD相交于G,GE∥CA交AB于E点,求证:四边形CFEG是菱形. 2. 已知:如图,EG、FH过正方形ABCD的对角线交点O,EG⊥FH,求证:四边形EFGH是正方形. 3. 如图,三角形ABC中,AB=AC,角A=108 o,BD平分角ABC交AC于D,求证:BC=AB+CD. 4. 在▱ABCD中,AD=BD,BE是AD边上的高,∠EBD=20°,求∠A的度数. 5.已知在平行四边形ABCD中,AB=6cm,AD=10cm,∠ABC的平分线交AD于点E,交CD的延长线于点F,求DF的长. 6. 如图,在正方形ABCD中,E是CD边的中点,AC与BE相交于点F,连接DF. (1)在不增加点和线的前提下,直接写出图中所有的全等三角形; (2)连接AE,试判断AE与DF的位置关系,并证明你的结论; (3)延长DF交BC于点M,试判断BM与MC的数量关系.(直接写出结论) 7. 如图,在正方形ABCD中,G是BC上任意一点,连接AG,DE⊥AG于E,BF∥DE交AG于F,探究线段AF、BF、EF三者之间的数量关系,并说明理由. 8. 已知,如图,正方形ABCD的面积为25,菱形PQCB的面积为20,求阴影部分的面积. 9. 已知,如图,▱ABCD中,BE,CF分别是∠ABC和∠BCD的角平分线,BE,CF相交于点O。 (1)求证:BE⊥CF; (2)试判断AF与DE有何数量关系,并说明理由; (3)当△BOC为等腰直角三角形时,四边形ABCD是何特殊四边形?(直接写出答案) 10. 在正方形ABCD中,M、N、P、Q分别是边AB、BC、CD、DA上的点,且MP⊥NQ.MP与NQ是否相等?并说明理由. 11. 如图,四边形ABCD中,∠A=135°,∠B=∠D=90°,AD=2,求四边形ABCD的面积. 12. 已知,在四边形ABCD中,AB⊥AD,BC⊥CD,AB=BC,∠ABC=120°,∠MBN=60°,∠MBN的两边分别交AD,DC(或它们的延长线)于E,F两点. (1)当AE=CF时(如图1),求证:AE+CF=EF; (2)当AE≠CF时,在图2和图3这两种情况下,AE+CF=EF是否成立?若成立,请给予证明;若不成立,线段AE,CF,EF又有怎样的数量关系?请写出你的猜想,不需要证明。 13.在直角梯形ABCD中,∠B=90°,AD∥BC,AB=BC=8,CD=10,求梯形面积. 14. 如图,△ABC中,AB=AC,∠A=90°,D为BC中点,E、F分别为AB、AC上的点,且满足AE=CF. 求证:DE=DF. 15. 两个大小相同且含30°角的三角板ABC和DEC如图①摆放,使直角顶点重合.将图①中△DEC绕点C逆时针旋转30°得到图②,点F、G分别是CD、DE与AB的交点,点H是DE与AC的交点. (1)不添加辅助线,写出图②中所有与△BCF全等的三角形; (2)将图②中的△DEC绕点C逆时针旋转45°得△D1E1C,点F、G、H的对应点分别为F1、G1、H1,如图③.探究线段D1F1与AH1之间的数量关系,并写出推理过程; (3)在(2)的条件下,若D1E1与CE交于点I,求证:G1I=CI. 16.在直角坐标系中,O为坐标原点,已知点A(1,1),在x轴上确定点P,使△AOP为等腰三角形,则符合条件的点P的个数共有多少个? 17.如图(1),在Rt△ABC, ∠ACB=90°,分别以AB、BC为一边向外作正方形ABFG、BCED,连结AD、CF,AD与CF交于点M。 (1)求证:△ABD≌△FBC; (2)如图(2),已知AD=6,求四边形AFDC的面积; (3)在△ABC中,设BC=a,AC=b,AB=c,当∠ACB≠90°时,c2≠a2+b2。在任意△ABC中,c2=a2+b2+k。就a=3,b=2的情形,探究k的取值范围(只需写出你得到的结论即 可)。 18.如图所示,DE为△ABC的中位线,点F在DE上,且BF平分∠ABC,若AB=5,BC=8,求EF长. 19. 如图,三个边长均为2的正方形重叠在一起,O1、O2是其中两个正方形的中心,则阴影部份面积。 20.如图两个边长为2的正方形重叠在一起,O是其中一个正方形的中点,求阴影部分的面积。 21. 如图,正方形ABCD的边长为2,E是CD的中点,在对角线AC上有一动点P,求PD+PE的最小值. 22.如图,在Rt△ABC中,∠B=90°,AB=3,BC=4,点D在BC上,以AC为对角线的所有▱ADCE中,求DE最小的值. 23. 如图,△ABC中,AB=8,AC=6,AD、AE分别是其角平分线和中线,过点C作CG⊥AD于F,交AB于G,连接EF,求线段EF的长. 24. 如图,△ABC的周长为26,点D,E都在边BC上,∠ABC的平分线垂直于AE,垂足为Q,∠ACB的平分线垂直于AD,垂足为P,若BC=10,求PQ的长. 25.如图,AD、BE分别是△ABC的中线和角平分线,AD⊥BE于点G,AD=BE=6,求AC的长. 26. 已知:如图,在△ABC中,CD⊥AB垂足为D,BE⊥AC垂足为E,连接DE,点G、F分别是BC、DE的中点. 求证:GF⊥DE. 27. 如图,在△ABC中,AB=AC,∠BAC=120°,AD⊥AC于点A, (1)求∠BAD的度数; (2)证明:DC=2BD. 28. 如图,在△ABC中,∠C=90°,∠B=30°,边AB的垂直平分线DE交AB于点E,交BC于点D,CD=3,求BC的长. 29. 如图,在Rt△ABC中,∠BAC=90°,D是BC上一点,且∠BAD=2∠C. 求证:∠B=∠ADB. 30. 如图,在Rt△ABC中,∠B=90°,AB=3,BC=4,将△ABC折叠,使点B恰好落在边AC上,与点B′重合,AE为折痕,求EB′的长。 31. 如图,在Rt△ABC中,∠B=90°,分别以A、C为圆心,大于AC长为半径画弧,两弧相交于点M、N,连接MN,与AC、BC分别交于点D、E,连接AE,则: (1)∠ADE= °; (2)AE EC;(填“=”、“>”或“<”) (3)当AB=3,AC=5时,求△ABE的周长. 32. 如图,在Rt△ABC∠B=90°中,∠A=30°,DE垂直平分斜边AC,交AB于D,E是垂足,连接CD,若BD=1,求AC的长. 33. 如图,四边形ABCD中,AB=AD,AD∥BC,∠ABC=60°,∠BCD=30°,BC=6,求△ACD的面积. 34. 如图,AB=5,AC=3,BC边上的中线AD=2,求△ABC的面积. 35. 如图,已知△ABC中,∠ABC=45°,F是高AD和BE的交点,CD=4,求线段DF的长. 36.如图,过边长为1的△ABC的边AB上一点P,作PE⊥AC于E,Q为BC延长线上一点,当PA=CQ时,连接PQ交AC边于D,求 DE的长. 37. 如图,点D为锐角∠ABC内一点,点M在边BA上,点N在边BC上,且DM=DN,∠BMD+∠BND=180°. 求证:BD平分∠ABC. 38. 如图,AE、OB、OC分别平分∠BAC、∠ABC、∠ACB,OD⊥BC,求证:∠1=∠2. 39. 如图,AD是△ABC中∠BAC的角平分线,DE⊥AB于点E,S△ABC=7,DE=2,AB=4,求AC长. 40. 如图,AD∥BC,∠ABC的角平分线BP与∠BAD的角平分线AP相交于点P,作PE⊥AB于点E.若PE=2,求两平行线AD与BC间的距离. 41. 如图,在△ABC中,∠ACB=90°,CE⊥AB于点E,AD=AC,AF平分∠CAB交CE于点F,DF的延长线交AC于点G. 求证:(1)DF∥BC;(2)FG=FE. 42. 如图,四边形ABCD中,AD∥BC,∠B=90°,E为AB上一点,分别以ED,EC为折痕将两个角(∠A,∠B)向内折起,点A,B恰好落在CD边的点F处.若AD=3,BC=5,求EF的值. 43. 已知:∠MON=40°,OE平分∠MON,点A、B、C分别是射线OM、OE、ON上的动点(A、B、C不与点O重合),连接AC交射线OE于点D.设∠OAC=x°. (1)如图1,若AB∥ON,则 ①∠ABO的度数是______; ②当∠BAD=∠ABD时,x=______;当∠BAD=∠BDA时,x=______. (2)如图2,若AB⊥OM,则是否存在这样的x的值,使得△ADB中有两个相等的角?若存在,求出x的值;若不存在,说明理由. 44. 探索归纳: (1)如图1,已知△ABC为直角三角形,∠A=90°,若沿图中虚线剪去∠A,则∠1+∠2等于 ( ) A. 90° B. 135° C. 270° D. 315° (2)如图2,已知△ABC中,∠A=40°,剪去∠A后成四边形,则∠1+∠2=_______ (3)如图2,根据(1)与(2)的求解过程,请你归纳猜想∠1+∠2与∠A的关系是________________ (4)如图3,若没有剪掉,而是把它折成如图3形状,试探究∠1+∠2与∠A的关系并说明理由. 45. 在▱ABCD中,∠BCD的平分线与BA的延长线相交于点E,BH⊥EC于点H,求证:CH=EH. 46. 如图,在▱ABCD中,DE平分∠ADC,AD=6,BE=2,求▱ABCD的周长. 47. 如图,AD∥BC,AE∥CD,BD平分∠ABC,求证:AB=CE. 48. 如图,▱ABCD中,∠ABC和∠BCD的平分线交于AD边上一点E,且BE=4,CE=3,求AB的长. 49. 如图,在矩形ABCD中,AB=2,BC=4,对角线AC的垂直平分线分别交AD、AC于点E、O,连接CE,求CE的长. 50. 如图,矩形ABCD中,AC、BD相交于点O,AE平分∠BAD,交BC于E,若∠EAO=15°,求∠BOE的度数. 51. 如图,在菱形ABCD中,点E是AB上的一点,连接DE交AC于点O,连接BO,且∠AED=50°,求∠CBO度数. 52. 如图:菱形ABCD中,E是AB的中点,且DE⊥AB,AB=a.求: (1)∠ABC的度数; (2)对角线AC的长; (3)菱形ABCD的面积. 53. ,在平行四边形ABCD中,AE平分∠BAD,交BC于点E,BF平分∠ABC,交AD于点F,AE与BF交于点P,连接EF,PD. (1)求证:四边形ABEF是菱形; (2)若AB=4,AD=6,∠ABC=60°,求PD。 54. 如图,在△ABC中,D是BC边上的一点,E是AD的中点,过A点作BC的平行线交CE的延长线于点F,且AF=BD,连接BF. (1)BD与CD有什么数量关系,并说明理由; (2)当△ABC满足什么条件时,四边形AFBD是矩形?并说明理由. 55. 如图,△ABC中,AC的垂直平分线分别交AC、AB于点D、F,BE⊥DF交DF的延长线于点E,已知∠A=30°,BC=2,AF=BF,求四边形BCDE的面积. 56. 如图,在平行四边形ABCD中,E,F为BC上两点,且BE=CF,AF=DE。 求证:(1)△ABF≌△DCE; (2)四边形ABCD是矩形。 57. 如图,在正方形ABCD中,E、F分别是边BC、CD上的点,∠EAF=45°,△ECF的周长为4,求正方形ABCD的边长. 58. 如图,Rt△ABC中,∠C=90°,AC=3,BC=4,点P为AB边上任一点,过P分别作PE⊥AC于E,PF⊥BC于F,求线段EF的最小值. 59. 如图1,在正方形ABCD中,P是对角线BD上的一点,点E在AD的延长线上,且PA=PE,PE交CD于F. (1)证明:PC=PE; (2)求∠CPE的度数; (3)如图2,把正方形ABCD改为菱形ABCD,其他条件不变,当∠ABC=120°时,连接CE,试探究线段AP与线段CE的数量关系,并说明理由. 只供学习与交流展开阅读全文
咨信网温馨提示:1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。




四边形综合经典难题说课讲解.doc



实名认证













自信AI助手
















微信客服
客服QQ
发送邮件
意见反馈



链接地址:https://www.zixin.com.cn/doc/4050466.html