《管理运筹学》第四版课后习题解析(上)演示教学.docx
《《管理运筹学》第四版课后习题解析(上)演示教学.docx》由会员分享,可在线阅读,更多相关《《管理运筹学》第四版课后习题解析(上)演示教学.docx(55页珍藏版)》请在咨信网上搜索。
《管理运筹学》第四版课后习题解析(上) 《管理运筹学》第四版课后习题解析(上) 第2章 线性规划的图解法 1.解: (1)可行域为OABC。 (2)等值线为图中虚线部分。 (3)由图2-1可知,最优解为B点,最优解=,;最优目标函数值。 图2-1 2.解: (1)如图2-2所示,由图解法可知有唯一解,函数值为3.6。 图2-2 (2)无可行解。 (3)无界解。 (4)无可行解。 (5)无穷多解。 (6)有唯一解 ,函数值为。 3.解: (1)标准形式 (2)标准形式 (3)标准形式 4.解: 标准形式 松弛变量(0,0) 最优解为 =1,x2=3/2。 5.解: 标准形式 剩余变量(0, 0, 13) 最优解为 x1=1,x2=5。 6.解: (1)最优解为 x1=3,x2=7。 (2)。 (3)。 (4) (5)最优解为 x1=8,x2=0。 (6)不变化。因为当斜率,最优解不变,变化后斜率为1,所以最优解不变。 7.解: 设x,y分别为甲、乙两种柜的日产量, 目标函数z=200x+240y, 线性约束条件: 即 作出可行域. 解 得 答:该公司安排甲、乙两种柜的日产量分别为4台和8台,可获最大利润2720元. 8.解: 设需截第一种钢板x张,第二种钢板y张,所用钢板面积zm2. 目标函数z=x+2y, 线性约束条件: 作出可行域,并做一组一组平行直线x+2y=t.解得 . 但E不是可行域内的整点,在可行域的整点中,点使z取得最小值。 答:应截第一种钢板4张,第二种钢板8张,能得所需三种规格的钢板,且使所用钢板的面积最小. 9.解: 设用甲种规格原料x张,乙种规格原料y张,所用原料的总面积是zm2,目标函数z=3x+2y,线性约束条件 作出可行域.作一组平等直线3x+2y=t. 解得 C不是整点,C不是最优解.在可行域内的整点中,点B(1,1)使z取得最小值. z最小=3×1+2×1=5, 答:用甲种规格的原料1张,乙种原料的原料1张,可使所用原料的总面积最小为5m2. 10.解: 设租用大卡车x辆,农用车y辆,最低运费为z元.目标函数为z=960x+360y. 线性约束条件是 作出可行域,并作直线960x+360y=0. 即8x+3y=0,向上平移 由得最佳点为 作直线960x+360y=0. 即8x+3y=0,向上平移至过点B(10,8)时,z=960x+360y取到最小值. z最小=960×10+360×8=12480 答:大卡车租10辆,农用车租8辆时运费最低,最低运费为12480元. 11.解: 设圆桌和衣柜的生产件数分别为x、y,所获利润为z,则z=6x+10y. 即 作出可行域.平移6x+10y=0 ,如图 得即C(350,100).当直线6x+10y=0即3x+5y=0平移到经过点C(350,100)时,z=6x+10y最大 12.解: 模型 (1),,即目标函数最优值是103 000。 (2)2,4有剩余,分别是330,15,均为松弛变量。 (3)50,0,200,0。 (4)在变化,最优解不变;在400到正无穷变化,最优解不变。 (5)因为,所以原来的最优产品组合不变。 13.解: (1)模型 基金A,B分别为4 000元,10 000元,回报额为62000元。 (2)模型变为 推导出,,故基金A投资90万元,基金B投资30万元。 第3章 线性规划问题的计算机求解 1.解: ⑴甲、乙两种柜的日产量是分别是4和8,这时最大利润是2720 ⑵每多生产一件乙柜,可以使总利润提高13.333元 ⑶常数项的上下限是指常数项在指定的范围内变化时,与其对应的约束条件的对偶价格不变。比如油漆时间变为100,因为100在40和160之间,所以其对偶价格不变仍为13.333 ⑷不变,因为还在120和480之间。 2.解: ⑴不是,因为上面得到的最优解不为整数解,而本题需要的是整数解 ⑵最优解为 (4,8) 3 .解: ⑴农用车有12辆剩余 ⑵大于300 ⑶每增加一辆大卡车,总运费降低192元 4.解: 计算机得出的解不为整数解,平移取点得整数最优解为(10,8) 5.解: 圆桌和衣柜的生产件数分别是350和100件,这时最大利润是3100元 相差值为0代表,不需要对相应的目标系数进行改进就可以生产该产品。 最优解不变,因为C1允许增加量20-6=14;C2允许减少量为10-3=7,所有允许增加百分比和允许减少百分比之和(7.5-6)/14+(10-9)/7〈100%,所以最优解不变。 6.解: (1),;目标函数最优值103 000。 (2)1、3车间的加工工时数已使用完;2、4车间的加工工时数没用完;没用完的加工工时数为2车间330小时,4车间15小时。 (3)50,0,200,0。 含义:1车间每增加1工时,总利润增加50元;3车间每增加1工时,总利润增加200元;2车间与4车间每增加一个工时,总利润不增加。 (4)3车间,因为增加的利润最大。 (5)在400到正无穷的范围内变化,最优产品的组合不变。 (6)不变,因为在的范围内。 (7)所谓的上限和下限值指当约束条件的右边值在给定范围内变化时,约束条件1的右边值在变化,对偶价格仍为50(同理解释其他约束条件)。 (8)总利润增加了100×50=5 000,最优产品组合不变。 (9)不能,因为对偶价格发生变化。 (10)不发生变化,因为允许增加的百分比与允许减少的百分比之和 (11)不发生变化,因为允许增加的百分比与允许减少的百分比之和,其最大利润为103 000+50×50−60×200=93 500元。 7.解: (1)4 000,10 000,62 000。 (2)约束条件1:总投资额增加1个单位,风险系数则降低0.057; 约束条件2:年回报额增加1个单位,风险系数升高2.167; 约束条件3:基金B的投资额增加1个单位,风险系数不变。 (3)约束条件1的松弛变量是0,表示投资额正好为1 200 000;约束条件2的剩余变量是0,表示投资回报额正好是60 000;约束条件3的松弛变量为700 000,表示投资B基金的投资额为370 000。 (4)当不变时,在3.75到正无穷的范围内变化,最优解不变; 当不变时,在负无穷到6.4的范围内变化,最优解不变。 (5)约束条件1的右边值在变化,对偶价格仍为0.057(其他同理)。 (6)不能,因为允许减少的百分比与允许增加的百分比之和,理由见百分之一百法则。 8.解: (1)18 000,3 000,102 000,153 000。 (2)总投资额的松弛变量为0,表示投资额正好为1 200 000;基金B的投资额的剩余变量为0,表示投资B基金的投资额正好为300 000; (3)总投资额每增加1个单位,回报额增加0.1; 基金B的投资额每增加1个单位,回报额下降0.06。 (4)不变时,在负无穷到10的范围内变化,其最优解不变; 不变时,在2到正无穷的范围内变化,其最优解不变。 (5)约束条件1的右边值在300 000到正无穷的范围内变化,对偶价格仍为0.1; 约束条件2的右边值在0到1 200 000的范围内变化,对偶价格仍为-0.06。 (6)100%故对偶价格不变。 9.解: (1),,,,最优目标函数18.5。 (2)约束条件2和3,对偶价格为2和3.5,约束条件2和3的常数项增加一个单位目标函数分别提高2和3.5。 (3)第3个,此时最优目标函数值为22。 (4)在负无穷到5.5的范围内变化,其最优解不变,但此时最优目标函数值变化。 (5)在0到正无穷的范围内变化,其最优解不变,但此时最优目标函数值变化。 10.解: (1)约束条件2的右边值增加1个单位,目标函数值将增加3.622。 (2)目标函数系数提高到0.703,最优解中的取值可以大于零。 (3)根据百分之一百法则判定,因为允许减少的百分比与允许增加的百分比之和,所以最优解不变。 (4)因为%,根据百分之一百法则,我们不能判定其对偶价格是否有变化。 第4章 线性规划在工商管理中的应用 1.解: 为了用最少的原材料得到10台锅炉,需要混合使用14种下料方案。 设14种方案下料时得到的原材料根数分别为x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14,如表4-1所示。 表4-1 各种下料方式 下料方式 1 2 3 4 5 6 7 8 9 10 11 12 13 14 2 640 mm 2 1 1 1 0 0 0 0 0 0 0 0 0 0 1 770 mm 0 1 0 0 3 2 2 1 1 1 0 0 0 0 1 650 mm 0 0 1 0 0 1 0 2 1 0 3 2 1 0 1 440 mm 0 0 0 1 0 0 1 0 1 2 0 1 2 3 min f=x1+x2+x3+x4+x5+x6+x7+x8+x9+x10+x11+x12+x13+x14 s.t. 2x1+x2+x3+x4≥80 x2+3x5+2x6+2x7+x8+x9+x10≥350 x3+x6+2x8+x9+3x11+2x12+x13≥420 x4+x7+x9+2x10+x12+2x13+3x14≥10 x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14≥0 通过管理运筹学软件,我们可以求得此问题的解为: x1=40,x2=0,x3=0,x4=0,x5=116.667,x6=0,x7=0,x8=0,x9=0,x10=0,x11=140,x12=0,x13=0,x14=3.333 最优值为300。 2.解: (1)将上午11时至下午10时分成11个班次,设xi表示第i班次新上岗的临时工人数,建立如下模型。 min f=16(x1+x 2+x3+x4+x5+x6+x7+x8+x9+x10+x11) s.t. x1+1≥9 x1+x2+1≥9 x1+x2+x3+2≥9 x1+x2+x3+x4+2≥3 x2+x3+x4+x5+1≥3 x3+x4+x5+x6+2≥3 x4+x5+x6+x7+1≥6 x5+x6+x7+x8+2≥12 x6+x7+x8+x9+2≥12 x7+x8+x9+x10+1≥7 x8+x9+x10+x11+1≥7 x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11≥0 通过管理运筹学软件,我们可以求得此问题的解如下: x1=8,x2=0,x3=1,x4=1,x5=0,x6=4,x7=0,x8=6,x9=0,x10=0,x11=0, 最优值为320。 在满足对职工需求的条件下,在11时安排8个临时工,13时新安排1个临时工,14时新安排1个临时工,16时新安排4个临时工,18时新安排6个临时工可使临时工的总成本最小。 (2)这时付给临时工的工资总额为320,一共需要安排20个临时工的班次。 约束 松弛/剩余变量 对偶价格 ------ ------------ ------------ 1 0 −4 2 0 0 3 2 0 4 9 0 5 0 −4 6 5 0 7 0 0 8 0 0 9 0 −4 10 0 0 11 0 0 根据剩余变量的数字分析可知,可以让11时安排的8个人工做3小时,13时安排的1个人工作3小时,可使得总成本更小。 (3)设xi表示第i班上班4小时临时工人数,yj表示第j班上班3小时临时工人数。 min f=16(x1+x 2+x3+x4+x5+x6+x7+x8)+12(y1+y2+y3+y4+y5+y6+y7+y8+y9) s.t. x1+y1+1≥9 x1+x2+y1+y2+1≥9 x1+x2+x3+y1+y2+y3+2≥9 x1+x2+x3+x4+y2+y3+y4+2≥3 x2+x3+x4+x5+y3+y4+y5+1≥3 x3+x4+x5+x6+y4+y5+y6+2≥3 x4+x5+x6+x7+y5+y6+y7+1≥6 x5+x6+x7+x8+y6+y7+y8+2≥12 x6+x7+x8+y7+y8+y9+2≥12 x7+x8+y8+y9+1≥7 x8+y9+1≥7 x1,x2,x3,x4,x5,x6,x7,x8,y1,y2,y3,y4,y5,y6,y7,y8,y9≥0 用管理运筹学软件我们可以求得此问题的解如下: x1=0,x2=0,x3=0,x4=0,x5=0,x6=0,x7=0,x8=6, y1=8,y2=0,y3=1,y4=0,y5=1,y6=0,y7=4,y8=0,y9=0。 最优值为264。 具体安排如下。 在11:00-12:00安排8个3小时的班,在13:00-14:00安排1个3小时的班,在 15:00-16:00安排1个3小时的班,在17:00-18:00安排4个3小时的班,在18:00-19:00安排6个4小时的班。 总成本最小为264元,能比第一问节省320−264=56元。 3.解: 设xij,xij’分别为该工厂第i种产品的第j个月在正常时间和加班时间内的生产量;yij为i种产品在第j月的销售量,wij为第i种产品第j月末的库存量,根据题意,可以建立如下模型: s.t. 4. 解: (1)设生产A、B、C三种产品的数量分别为x1,x2,x3,则可建立下面的数学模型。 max z=10 x1+12x2+14x3 s.t. x1+1.5x2+4x3≤2 000 2x1+1.2x2+x3≤1 000 x1≤200 x2≤250 x3 ≤100 x1,x2,x3≥0 用管理运筹学软件我们可以求得此问题的解如下:x1=200,x2=250,x3=100,最优值为6 400。即在资源数量及市场容量允许的条件下,生产A 200件,B 250件,C 100件,可使生产获利最多。 (2)A、B、C的市场容量的对偶价格分别为10元,12元,14元。材料、台时的对偶价格均为0。说明A的市场容量增加一件就可使总利润增加10元,B的市场容量增加一件就可使总利润增加12元,C的市场容量增加一件就可使总利润增加14元。但增加一千克的材料或增加一个台时数都不能使总利润增加。如果要开拓市场应当首先开拓C产品的市场,如果要增加资源,则应在0价位上增加材料数量和机器台时数。 5.解: (1)设白天调查的有孩子的家庭的户数为x11,白天调查的无孩子的家庭的户数为x12,晚上调查的有孩子的家庭的户数为x21,晚上调查的无孩子的家庭的户数为x22,则可建立下面的数学模型。 min f =25x11+20x12+30x21+24x22 s.t. x11+x12+x21+x22≥2 000 x11+x12 =x21+x22 x11+x21≥700 x12+x22≥450 x11, x12, x21, x22≥0 用管理运筹学软件我们可以求得此问题的解如下。 x11=700,x12=300,x21=0,x22=1 000, 最优值为47 500。 白天调查的有孩子的家庭的户数为700户,白天调查的无孩子的家庭的户数为300户,晚上调查的有孩子的家庭的户数为0,晚上调查的无孩子的家庭的户数为1 000户,可使总调查费用最小。 (2)白天调查的有孩子的家庭的费用在20~26元之间,总调查方案不会变化;白天调查的无孩子的家庭的费用在19~25元之间,总调查方案不会变化;晚上调查的有孩子的家庭的费用在29到正无穷之间,总调查方案不会变化;晚上调查的无孩子的家庭的费用在-20~25元之间,总调查方案不会变化。 (3)发调查的总户数在1 400到正无穷之间,对偶价格不会变化;有孩子家庭的最少调查数在0到1 000之间,对偶价格不会变化;无孩子家庭的最少调查数在负无穷到1 300之间,对偶价格不会变化。 管理运筹学软件求解结果如下: 6.解: 设空调机、洗衣机的月供应量分别是x,y台,总利润是P,则P=6x+8y,可建立约束条件如下: 30x+20y≤300; 5x+10y≤110; x≥0 y≥0 x,y均为整数。 使用管理运筹学软件可求得,x=4,y=9,最大利润值为9600; 7. 解: 1、该问题的决策目标是公司总的利润最大化,总利润为: 0.5x1+ 0.2x2+ 0.25x3 决策的限制条件: 8x1+ 4x2+ 6x3≤500 铣床限制条件 4x1+ 3x2 ≤350 车床限制条件 3x1 + x3≤150 磨床限制条件 即总绩效测试(目标函数)为: max z= 0.5x1+ 0.2x2+ 0.25x3 2、本问题的线性规划数学模型 max z= 0.5x1+ 0.2x2+ 0.25x3 S.T. 8x1+ 4x2+ 6x3≤500 4x1+ 3x2 ≤350 3x1 + x3≤150 x1≥0、x2≥0、x3≥0 最优解(50,25,0),最优值:30元。 3、若产品Ⅲ最少销售18件,修改后的的数学模型是: max z= 0.5x1+ 0.2x2+ 0.25x3 S.T. 8x1+ 4x2+ 6x3≤500 4x1+ 3x2 ≤350 3x1 + x3≤150 x3≥18 x1≥0、x2≥0、x3≥0 这是一个混合型的线性规划问题。 代入求解模板得结果如下: 最优解(44,10,18),最优值:28.5元。 8.解: 设第i个月签订的合同打算租用j个月的面积为xij,则需要建立下面的数学模型: min f=2 800x11+4 500x12+6 000x13+7 300x14+2 800x21+4 500x22+6 000x23+2 800x31+4 500x32+2 800x41 s.t. x11≥15 x12+x21≥10 x13+x22+x31≥20 x14+x23+x32+x41≥12 xij≥0,i,j=1,2,3,4 用管理运筹学软件我们可以求得此问题的解如下。 x11=15,x12=0,x13=0,x14=0,x21=10,x22=0,x23=0,x31=20,x32=0,x41=12, 最优值为159 600,即在一月份租用1 500平方米一个月,在二月份租用1 000平方米一个月,在三月份租用2 000平方米一个月,四月份租用1 200平方米一个月,可使所付的租借费最小。 9. 解: 设xi为每月买进的种子担数,yi为每月卖出的种子担数,则线性规划模型为; Max Z=3.1y1+3.25y2+2.95y3-2.85x1-3.05x2-2.9x3 s.t. y1≤1000 y2≤1000- y1+ x1 y3≤1000- y1+ x1- y2+ x2 1000- y1+ x1≤5000 1000- y1+ x1- y2+ x2≤5000 x1≤(20000+3.1 y1)/ 2.85 x2≤(20000+3.1 y1-2.85x1+3.25y2)/ 3.05 x3≤(20000+3.1 y1-2.85x1+3.25y2-3.05x2+2.95y3)/ 2.9 1000-y1+x1-y2+ x2-y3 +x3=2000 xi≥0 yi≥0 (i=1,2,3) 10.解: 设xij表示第i种类型的鸡饲料需要第j种原料的量,可建立下面的数学模型。 max z=9(x11+x12+x13)+7(x21+x22+x23)+8(x31+x32+x33)−5.5(x11+x21+x31)−4(x12+x22+ x32)−5(x13+x23+x33) s.t. x11≥0.5(x11+x12+x13) x12≤0.2(x11+x12+x13) x21≥0.3(x21+x22+x23) x23≤0.3(x21+x22+x23) x33≥0.5(x31+x32+x33) x11+x21+x31+ x12+x22+x32+ x13+x23+x33≤30 x11+x12+x13≤5 x21+x22+x23≤18 x31+x32+x33≤10 xij≥0,i,j=1,2,3 用管理运筹学软件我们可以求得此问题的解如下。 x11=2.5,x12=1,x13=1.5,x21=4.5,x22=10.5,x23=0,x31=0,x32=5,x33=5,最优值为93.. 11. 解: 设X为第i个月生产的产品Ⅰ数量,Y为第i个月生产的产品Ⅱ数量,Z,W分别为第i个月末产品Ⅰ、Ⅱ库存数,S,S分别为用于第(i+1)个月库存的自有及租借的仓库容积(立方米),则可以建立如下模型。 min z = s.t X1−10 000=Z1 X2+Z1−10 000=Z2 X3+Z2−10 000=Z3 X4+Z3−10 000=Z4 X5+Z4−30 000=Z5 X6+Z5−30 000=Z6 X7+Z6−30 000=Z7 X8+Z7−30 000=Z8 X9+Z8−30 000=Z9 X10+Z9−100 000=Z10 X11+Z10−100 000=Z11 X12+Z11−100 000=Z12 Y1−50 000=W1 Y2+W1−50 000=W2 Y3+W2−15 000=W3 Y4+W3−15 000=W4 Y5+W4−15 000=W5 Y6+W5−15 000=W6 Y7+W6−15 000=W7 Y8+W7−15 000=W8 Y9+W8−15 000=W9 Y10+W9−50 000=W10 Y11+W10−50 000=W11 Y12+W11−50 000=W12 S1i≤15 000 1≤i≤12 Xi+Yi≤120 000 1≤i≤12 0.2Zi+0.4Wi 1≤i≤12 X≥0,,Z 用管理运筹学软件我们可以求得此问题的解如下。 最优值为4 910 500。 X1=10 000, X2=10 000, X3=10 000, X4=10 000, X5=30 000, X6=30 000, X7=30 000, X8=45 000, X9=105 000, X10=70 000, X11=70 000, X12=70 000; Y1=50 000, Y2=50 000, Y3=15 000, Y4=15 000, Y5=15 000 Y6=15 000, Y7=15 000, Y8=15 000, Y9=15 000, Y10=50 000, Y11=50 000, Y12=50 000; Z8=15 000, Z9=90 000, Z10=60 000, Z11=30 000; S18=3 000, S19=15 000, S110=12 000, S111=6 000, S29=3 000; 其余变量都等于0。 12.解: 为了以最低的成本生产足以满足市场需求的两种汽油,将这个问题写成线性规划问题进行求解,令, x1=生产标准汽油所需的X100原油的桶数 x2=生产经济汽油所需的X100原油的桶数 x3=生产标准汽油所需的X220原油的桶数 x4=生产经济汽油所需的X220原油的桶数 则,min Z=30 x1+30 x2+34.8 x3+34.8 x4 s.t. x1+ x3≥25000 x2+ x4≥32000 0.35 x1+ 0.6x3≥0.45(x1+ x3) 0.55 x2+ 0.25x4≤0.5(x2+ x4) 通过管理运筹学软件,可得x1=15000,x2=26666.67,x3=10000,x4=5333.33 总成本为1783600美元。 13.解: (1)设第i个车间生产第j种型号产品的数量为xij, 可以建立如下数学模型。 max z=25(x11+x21 +11 s.t 4 x j=1,2,3,4 用管理运筹学软件我们可以求得此问题的解如下。 **********************最优解如下************************* 目标函数最优值为:279 400 变量 最优解 相差值 ------- --------- ---------- x11 0 11 x21 0 26.4 x31 1 400 0 x41 0 16.5 x51 0 5.28 x12 0 15.4 x32 800 0 x42 0 11 x52 0 10.56 x13 1 000 0 x23 5 000 0 x43 0 8.8 x53 2 000 0 x14 2 400 0 x24 0 2.2 x44 6 000 0 即x31=1400,x32=800,x13=1000,x23=5000,x53=2000,x14=2400, x44=6000,其余均为0,得到最优值为279 400。 (2) 对四种产品利润和5个车间的可用生产时间做灵敏度分析; 约束 松弛/剩余变量 对偶价格 ------- ----------- ---------- 1 0 25 2 500 0 3 0 20 4 0 3.8 5 7 700 0 6 0 2.2 7 0 4.4 8 6 000 0 9 0 5.5 10 0 2.64 目标函数系数范围 : 变量 下限 当前值 上限 ------- ------- ------- ------- x11 无下限 25 36 x21 无下限 25 51.4 x31 19.72 25 无上限 x41 无下限 25 41.5 x51 无下限 25 30.28 x12 无下限 20 35.4 x32 9.44 20 无上限 x42 无下限 20 31 x52 无下限 20 30.56 x13 13.2 17 19.2 x23 14.8 17 无上限 x43 无下限 17 25.8 x53 3.8 17 无上限 x14 9.167 11 14.167 x24 无下限 11 13.2 x44 6.6 11 无上限 常数项数范围: 约束 下限 当前值 上限 ------- ------- ------- ------- 1 0 1 400 2 900 2 无下限- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 管理运筹学 管理 运筹学 第四 课后 习题 解析 演示 教学
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精***】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【精***】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精***】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【精***】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文