因式分解专项练习题(含答案)备课讲稿.doc
《因式分解专项练习题(含答案)备课讲稿.doc》由会员分享,可在线阅读,更多相关《因式分解专项练习题(含答案)备课讲稿.doc(6页珍藏版)》请在咨信网上搜索。
此文档仅供收集于网络,如有侵权请联系网站删除 因式分解 专题过关 1.将下列各式分解因式 (1)3p2﹣6pq (2)2x2+8x+8 2.将下列各式分解因式 (1)x3y﹣xy (2)3a3﹣6a2b+3ab2. 3.分解因式 (1)a2(x﹣y)+16(y﹣x) (2)(x2+y2)2﹣4x2y2 4.分解因式: (1)2x2﹣x (2)16x2﹣1 (3)6xy2﹣9x2y﹣y3 (4)4+12(x﹣y)+9(x﹣y)2 5.因式分解: (1)2am2﹣8a (2)4x3+4x2y+xy2 6.将下列各式分解因式: (1)3x﹣12x3 (2)(x2+y2)2﹣4x2y2 7.因式分解:(1)x2y﹣2xy2+y3 (2)(x+2y)2﹣y2 8.对下列代数式分解因式: (1)n2(m﹣2)﹣n(2﹣m) (2)(x﹣1)(x﹣3)+1 9.分解因式:a2﹣4a+4﹣b2 10.分解因式:a2﹣b2﹣2a+1 11.把下列各式分解因式: (1)x4﹣7x2+1 (2)x4+x2+2ax+1﹣a2 (3)(1+y)2﹣2x2(1﹣y2)+x4(1﹣y)2 (4)x4+2x3+3x2+2x+1 12.把下列各式分解因式: (1)4x3﹣31x+15; (2)2a2b2+2a2c2+2b2c2﹣a4﹣b4﹣c4; (3)x5+x+1; (4)x3+5x2+3x﹣9; (5)2a4﹣a3﹣6a2﹣a+2. 因式分解 专题过关 1.将下列各式分解因式 (1)3p2﹣6pq; (2)2x2+8x+8 分析:(1)提取公因式3p整理即可; (2)先提取公因式2,再对余下的多项式利用完全平方公式继续分解. 解答:解:(1)3p2﹣6pq=3p(p﹣2q), (2)2x2+8x+8,=2(x2+4x+4),=2(x+2)2. 2.将下列各式分解因式 (1)x3y﹣xy (2)3a3﹣6a2b+3ab2. 分析:(1)首先提取公因式xy,再利用平方差公式进行二次分解即可; (2)首先提取公因式3a,再利用完全平方公式进行二次分解即可. 解答:解:(1)原式=xy(x2﹣1)=xy(x+1)(x﹣1); (2)原式=3a(a2﹣2ab+b2)=3a(a﹣b)2. 3.分解因式 (1)a2(x﹣y)+16(y﹣x); (2)(x2+y2)2﹣4x2y2. 分析:(1)先提取公因式(x﹣y),再利用平方差公式继续分解; (2)先利用平方差公式,再利用完全平方公式继续分解. 解答:解:(1)a2(x﹣y)+16(y﹣x),=(x﹣y)(a2﹣16),=(x﹣y)(a+4)(a﹣4); (2)(x2+y2)2﹣4x2y2,=(x2+2xy+y2)(x2﹣2xy+y2),=(x+y)2(x﹣y)2. 4.分解因式: (1)2x2﹣x; (2)16x2﹣1; (3)6xy2﹣9x2y﹣y3; (4)4+12(x﹣y)+9(x﹣y)2. 分析:(1)直接提取公因式x即可; (2)利用平方差公式进行因式分解; (3)先提取公因式﹣y,再对余下的多项式利用完全平方公式继续分解; (4)把(x﹣y)看作整体,利用完全平方公式分解因式即可. 解答:解:(1)2x2﹣x=x(2x﹣1); (2)16x2﹣1=(4x+1)(4x﹣1); (3)6xy2﹣9x2y﹣y3,=﹣y(9x2﹣6xy+y2),=﹣y(3x﹣y)2; (4)4+12(x﹣y)+9(x﹣y)2,=[2+3(x﹣y)]2,=(3x﹣3y+2)2. 5.因式分解: (1)2am2﹣8a; (2)4x3+4x2y+xy2 分析:(1)先提公因式2a,再对余下的多项式利用平方差公式继续分解; (2)先提公因式x,再对余下的多项式利用完全平方公式继续分解. 解答:解:(1)2am2﹣8a=2a(m2﹣4)=2a(m+2)(m﹣2); (2)4x3+4x2y+xy2,=x(4x2+4xy+y2),=x(2x+y)2. 6.将下列各式分解因式: (1)3x﹣12x3 (2)(x2+y2)2﹣4x2y2. 分析:(1)先提公因式3x,再利用平方差公式继续分解因式; (2)先利用平方差公式分解因式,再利用完全平方公式继续分解因式. 解答:解:(1)3x﹣12x3=3x(1﹣4x2)=3x(1+2x)(1﹣2x); (2)(x2+y2)2﹣4x2y2=(x2+y2+2xy)(x2+y2﹣2xy)=(x+y)2(x﹣y)2. 7.因式分解: (1)x2y﹣2xy2+y3; (2)(x+2y)2﹣y2. 分析:(1)先提取公因式y,再对余下的多项式利用完全平方式继续分解因式; (2)符合平方差公式的结构特点,利用平方差公式进行因式分解即可. 解答:解:(1)x2y﹣2xy2+y3=y(x2﹣2xy+y2)=y(x﹣y)2; (2)(x+2y)2﹣y2=(x+2y+y)(x+2y﹣y)=(x+3y)(x+y). 8.对下列代数式分解因式: (1)n2(m﹣2)﹣n(2﹣m); (2)(x﹣1)(x﹣3)+1. 分析:(1)提取公因式n(m﹣2)即可; (2)根据多项式的乘法把(x﹣1)(x﹣3)展开,再利用完全平方公式进行因式分解. 解答:解:(1)n2(m﹣2)﹣n(2﹣m)=n2(m﹣2)+n(m﹣2)=n(m﹣2)(n+1); (2)(x﹣1)(x﹣3)+1=x2﹣4x+4=(x﹣2)2. 9.分解因式:a2﹣4a+4﹣b2. 分析:本题有四项,应该考虑运用分组分解法.观察后可以发现,本题中有a的二次项a2,a的一次项﹣4a,常数项4,所以要考虑三一分组,先运用完全平方公式,再进一步运用平方差公式进行分解. 解答:解:a2﹣4a+4﹣b2=(a2﹣4a+4)﹣b2=(a﹣2)2﹣b2=(a﹣2+b)(a﹣2﹣b). 10.分解因式:a2﹣b2﹣2a+1 分析:当被分解的式子是四项时,应考虑运用分组分解法进行分解.本题中有a的二次项,a的一次项,有常数项.所以要考虑a2﹣2a+1为一组. 解答:解:a2﹣b2﹣2a+1=(a2﹣2a+1)﹣b2=(a﹣1)2﹣b2=(a﹣1+b)(a﹣1﹣b). 11.把下列各式分解因式: (1)x4﹣7x2+1; (2)x4+x2+2ax+1﹣a2 (3)(1+y)2﹣2x2(1﹣y2)+x4(1﹣y)2 (4)x4+2x3+3x2+2x+1 分析:(1)首先把﹣7x2变为+2x2﹣9x2,然后多项式变为x4﹣2x2+1﹣9x2,接着利用完全平方公式和平方差公式分解因式即可求解; (2)首先把多项式变为x4+2x2+1﹣x2+2ax﹣a2,然后利用公式法分解因式即可解; (3)首先把﹣2x2(1﹣y2)变为﹣2x2(1﹣y)(1﹣y),然后利用完全平方公式分解因式即可求解; (4)首先把多项式变为x4+x3+x2++x3+x2+x+x2+x+1,然后三个一组提取公因式,接着提取公因式即可求解. 解答:解:(1)x4﹣7x2+1=x4+2x2+1﹣9x2=(x2+1)2﹣(3x)2=(x2+3x+1)(x2﹣3x+1);(2)x4+x2+2ax+1﹣a=x4+2x2+1﹣x2+2ax﹣a2=(x2+1)﹣(x﹣a)2=(x2+1+x﹣a)(x2+1﹣x+a); (3)(1+y)2﹣2x2(1﹣y2)+x4(1﹣y)2=(1+y)2﹣2x2(1﹣y)(1+y)+x4(1﹣y)2=(1+y)2﹣2x2(1﹣y)(1+y)+[x2(1﹣y)]2=[(1+y)﹣x2(1﹣y)]2=(1+y﹣x2+x2y)2 (4)x4+2x3+3x2+2x+1=x4+x3+x2++x3+x2+x+x2+x+1=x2(x2+x+1)+x(x2+x+1)+x2+x+1=(x2+x+1)2. 12.把下列各式分解因式: (1)4x3﹣31x+15; (2)2a2b2+2a2c2+2b2c2﹣a4﹣b4﹣c4; (3)x5+x+1; (4)x3+5x2+3x﹣9; (5)2a4﹣a3﹣6a2﹣a+2. 分析:(1)需把﹣31x拆项为﹣x﹣30x,再分组分解; (2)把2a2b2拆项成4a2b2﹣2a2b2,再按公式法因式分解; (3)把x5+x+1添项为x5﹣x2+x2+x+1,再分组以及公式法因式分解; (4)把x3+5x2+3x﹣9拆项成(x3﹣x2)+(6x2﹣6x)+(9x﹣9),再提取公因式因式分解; (5)先分组因式分解,再用拆项法把因式分解彻底. 解答:解:(1)4x3﹣31x+15=4x3﹣x﹣30x+15=x(2x+1)(2x﹣1)﹣15(2x﹣1)=(2x﹣1)(2x2+1﹣15)=(2x﹣1)(2x﹣5)(x+3); (2)2a2b2+2a2c2+2b2c2﹣a4﹣b4﹣c4=4a2b2﹣(a4+b4+c4+2a2b2﹣2a2c2﹣2b2c2)=(2ab)2﹣(a2+b2﹣c2)2=(2ab+a2+b2﹣c2)(2ab﹣a2﹣b2+c2)=(a+b+c)(a+b﹣c)(c+a﹣b)(c﹣a+b); (3)x5+x+1=x5﹣x2+x2+x+1=x2(x3﹣1)+(x2+x+1)=x2(x﹣1)(x2+x+1)+(x2+x+1)=(x2+x+1)(x3﹣x2+1); (4)x3+5x2+3x﹣9=(x3﹣x2)+(6x2﹣6x)+(9x﹣9)=x2(x﹣1)+6x(x﹣1)+9(x﹣1)=(x﹣1)(x+3)2; (5)2a4﹣a3﹣6a2﹣a+2=a3(2a﹣1)﹣(2a﹣1)(3a+2)=(2a﹣1)(a3﹣3a﹣2)=(2a﹣1)(a3+a2﹣a2﹣a﹣2a﹣2)=(2a﹣1)[a2(a+1)﹣a(a+1)﹣2(a+1)]=(2a﹣1)(a+1)(a2﹣a﹣2)=(a+1)2(a﹣2)(2a﹣1). 只供学习与交流- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 因式分解 专项 练习题 答案 备课 讲稿
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【w****g】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【w****g】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【w****g】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【w****g】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文