高二数学点-直线-平面之间的位置关系.doc
《高二数学点-直线-平面之间的位置关系.doc》由会员分享,可在线阅读,更多相关《高二数学点-直线-平面之间的位置关系.doc(9页珍藏版)》请在咨信网上搜索。
1、点,直线,平面之间的位置关系一、知识网络 二、高考考点1、空间直线,空间直线与平面,空间两个平面的平行与垂直的判定或性质.其中,线面垂直是历年高考试题涉及的内容.2、上述平行与垂直的理论在以多面体为载体的几何问题中的应用;求角;求距离等.其中,三垂线定理及其逆定理的应用尤为重要.3、解答题循着先证明后计算的原则,融推理于计算之中,主要考察学生综合运用知识的能力,其中,突出考察模型法等数学方法,注重考察转化与化归思想;立体问题平面化;几何问题代数化.三、知识要点(一)空间直线1、空间两条直线的位置关系(1)相交直线有且仅有一个公共点;(2)平行直线在同一个平面内,没有公共点;(3)异面直线不同在
2、任何一个平面内,没有公共点.2、平行直线(1)公理4(平行直线的传递性):平行于同一条直线的两条直线互相平行.符号表示:设a,b,c为直线, (2)空间等角定理如果一个角的两边和另一个角的两边分别平行且方向相同,那么这两个角相等.推论:如果两条相交直线和另两条相交直线分别平行,那么这两条直线所成的锐角(或直角)相等.3、异面直线(1)定义:不同在任何一个平面内的两条直线叫做异面直线.(2)有关概念:()设直线a,b为异面直线,经过空间任意一点O作直线,并使/a,/b,则把和所成的锐角(或直角)叫做异面直线a和b所成的角.特例:如果两条异面直线所成角是直角,则说这两条异面直线互相垂直.认知:设
3、为异面直线a,b所成的角,则 .()和两条异面直线都垂直相交的直线(存在且唯一),叫做两条异面直线的公垂线.()两条异面直线的公垂线在这两条异面直线间的线段(公垂线段)的长度,叫做两条异面直线的距离.(二)空间直线与平面直线与平面的位置关系:(1)直线在平面内直线与平面有无数个公共点;(2)直线和平面相交直线与平面有且仅有一个公共点;(3)直线和平面平行直线与平面没有公共点.其中,直线和平面相交或直线和平面平行统称为直线在平面外.1、直线与平面平行(1)定义:如果一条直线和一个平面没有公共点,则说这条直线和这个平面平行,此为证明直线与平面平行的原始依据.(2)判定判定定理:如果平面外的一条直线
4、和这个平面内的一条直线平行,那么这条直线和这个平面平行.认知:应用此定理证题的三个环节:指出 .(3)性质性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行.2、直线与平面垂直(1)定义:如果直线l和平面 内的任何一条直线都垂直,则说直线l和平面 互相垂直,记作l .(2)判定:判定定理1:如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直于这个平面.判定定理2:如果两条平行直线中的一条垂直于一个平面,那么另一条也垂直于这个平面.符号表示: .(3)性质性质定理:如果两条直线垂直于同一个平面,那么这两条直线平行.符号表示: (4)概念()
5、点到平面的距离:从平面外一点引这个平面的垂线,则这个点和垂足间的距离叫做这个点到这个平面的距离.()直线和平面的距离:当一条直线和一个平面平行时,这条直线上任意一点到这个平面的距离,叫做这条直线和这个平面的距离.(三)空间两个平面1、两个平面的位置关系(1)定义:如果两个平面没有公共点,则说这两个平面互相平行.(2)两个平面的位置关系()两个平面平行没有公共点;()两个平面相交有一条公共直线.2、两个平面平行(1)判定判定定理1:如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行.判定定理2:(线面垂直性质定理):垂直于同一条直线的两个平面平行.(2)性质性质定理1:如果两个平
6、行平面同时和第三个平面相交,那么它们的交线平行.性质定理2(定义的推论):如果两个平面平行,那么其中一个平面内的所有直线都平行于另一个平面.3、有关概念(1)和两个平行平面同时垂直的直线,叫做两个平行平面的公垂线,它夹在这两个平行平面间的部分,叫做这两个平行平面的公垂线段.(2)两个平行平面的公垂线段都相等.(3)公垂线段的长度叫做两个平行平面间的距离.4、认知:两平面平行的判定定理的特征:线面平行 面面平行,或线线平行 面面平行;两平面平行的性质定理的特征:面面平行 线面平行,或面面平行 线线平行.它们恰是平行范畴中同一事物的相互依存和相互贯通的正反两个方面.四、高考真题(一)选择题1,设
7、为两个不同的平面,l,m为两条不同的直线,且 ,有如下的两个命题:若 ;若 那么( )A、是真命题,是假命题; B、是假命题,是真命题;C、都是真命题; D、都是假命题.分析:这里 .对于,若 ,则l,m可能平行,也可能异面;对于,若 则 可能垂直,也可能不垂直.故应选D.2、已知m,n是两条不重合的直线, 是三个两两不重合的平面,给出下列四个命题: 若m,n是异面直线, 其中真命题是( )A、和 B、和 C、和 D、和分析:由面面平行判定定理知为真命题;注意到垂直于同一个平面的两个平面不一定平行,为假命题;显然为假命题;由于m,n为异面直线,故可在 内确立两条相交直线与 平行,因而为真命题.
8、故应选D.3,设 为平面,m,n,l为直线,则m 的一个充分条件是( ) 分析:对于选项A,由于这里的直线m不一定在 内,故不一定有m ;对于选项B,它与m 构成的命题是:若两个平面都和第三个平面垂直,则其中一个平面与第三个平面的交线垂直于另一个平面,此命题为假;对于选项C,它与m 构成的命题是:若两个平面都和第三个平面垂直,且直线m垂直于其中一个平面,则m也垂直于另一个平面,此命题亦为假命题;排除法可知应选D.选项D与m 构成的命题是:若直线m与两个平行平面中的一个平面垂直,那么它和另一个平面也垂直,这显然为真命题.4、对于不重合的两个平面 ,给定下列条件:存在平面 ,使得 都垂直于 ;存在
9、平面 ,使得 都平行于 ; 内有不共线三点到 的距离相等;存在异面直线l,m,使得 ;其中可以判定 平行的条件有( )A、1个 B、2个 C、3个 D、4个分析:对于,垂直于同一平面 的两个平面 可能相交;对于,由面面平行的传递性可以判定 ;对于,当 相交时, 内仍可存在不共线三点到 的距离等;对于,在m上取定点P,经过点P在l与点P确定的平面内作l/l,则与m可确定平面 .由于 于是可知,本题应选B.(二)填空题1、已知m,n是不同的直线, 是不重合的平面,给出下列命题:若 若 若 m,n是两条异面直线,若 上面的命题中,真命题的序号是 (写出所有真命题的序号)分析:显然为假命题;对于, 内
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数学 直线 平面 之间 位置 关系
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【人****来】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【人****来】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。