苏教版七年级上册期中知识点复习.doc
《苏教版七年级上册期中知识点复习.doc》由会员分享,可在线阅读,更多相关《苏教版七年级上册期中知识点复习.doc(6页珍藏版)》请在咨信网上搜索。
1、苏教版七年级上册期中知识点复习正数和负数正数和负数的概念 负数:比0小的数 正数:比0大的数 0既不是正数,也不是负数注意: 字母a可以表示任意数,当a表示正数时,-a是负数;当a表示负数时, -a是正数;当a表示0时,-a仍是0。(如果出判断题为:带正号的数是正数,带负号的数是负数,这种说法是错误的,例如+a,-a就不能做出简单判 断) 正数有时也可以在前面加“+”,有时“+”省略不写。所以省略“+”的正 数的符号是正号。2. 具有相反意义的量若正数表示某种意义的量,则负数可以表示具有与该正数相反意义的量,比 如:零上8表示为:+8;零下8表示为:-8有理数1. 有理数的概念正整数、0、负整
2、数统称为整数(0和正整数统称为自然数)正分数和负分数统称为分数正整数,0,负整数,正分数,负分数都可以写成分数的形式,这样的数称为有理数。理解:只有能化成分数的数才是有理数。是无限不循环小数,不能写成分数形式,不是有理数。有限小数和无限循环小数都可化成分数,都是有理数。注意:引入负数以后,奇数和偶数的范围也扩大了,像-2,-4,-6,-8也是偶数,-1,-3,-5也是奇数。2. 有理数的分类按有理数的意义分类 按正、负来分 正整数 正整数 整数 0 正有理数 负整数 正分数有理数 有理数 0 (0不能忽视) 正分数 负整数 分数 负有理数 负分数 负分数总结:正整数、0统称为非负整数(也叫自然
3、数) 负整数、0统称为非正整数 正有理数、0统称为非负有理数 负有理数、0统称为非正有理数数轴数轴的概念 规定了原点,正方向,单位长度的直线叫做数轴。注意:数轴是一条向两端无限延伸的直线; 原点、正方向、单位长度是数轴的三要素,三者缺一不可; 同一数轴上的单位长度要统一; 数轴的三要素都是根据实际需要规定的。 2.数轴上的点与有理数的关系 所有的有理数都可以用数轴上的点来表示,正有理数可用原点右边的点表 示,负有理数可用原点左边的点表示,0用原点表示。 所有的有理数都可以用数轴上的点表示出来,但数轴上的点不都表示有理 数,也就是说,有理数与数轴上的点不是一一对应关系。(如,数轴上的点 不是有理
4、数) 3.利用数轴表示两数大小 在数轴上数的大小比较,右边的数总比左边的数大; 正数都大于0,负数都小于0,正数大于负数; 两个负数比较,距离原点远的数比距离原点近的数小。 4.数轴上特殊的最大(小)数 最小的自然数是0,无最大的自然数; 最小的正整数是1,无最大的正整数; 最大的负整数是-1,无最小的负整数 5.a可以表示什么数 a0表示a是正数;反之,a是正数,则a0; a0表示a是负数;反之,a是负数,则a0时,-a0(正数的相反数是负数) 当a0(负数的相反数是正数) 当a=0时,-a=0,(0的相反数是0)6.多重符号的化简 多重符号的化简规律:“+”号的个数不影响化简的结果,可以直
5、接省略;“-”号的个数决定最后化简结果;即:“-”的个数是奇数时,结果为负,“-”的个数是偶数时,结果为正。绝对值绝对值的几何定义 一般地,数轴上表示数a的点与原点的距离叫做a的绝对值,记作|a|。2.绝对值的代数定义 一个正数的绝对值是它本身; 一个负数的绝对值是它的相反数; 0的绝对值是0. 可用字母表示为:如果a0,那么|a|=a; a (a0)如果a0,那么|a|=-a; |a| 如果a=0,那么|a|=0。 -a (a0)3.绝对值的性质 任何一个有理数的绝对值都是非负数,也就是说绝对值具有非负性。所以,a取任何有理数,都有|a|0。即 0的绝对值是0;绝对值是0的数是0.即:a=0
6、 |a|=0; 一个数的绝对值是非负数,绝对值最小的数是0.即:|a|0; 任何数的绝对值都不小于原数。即:|a|a; 互为相反数的两数的绝对值相等。即:|-a|=|a|或若a+b=0,则|a|=|b|; 绝对值相等的两数相等或互为相反数。即:|a|=|b|,则a=b或a=-b; 若几个数的绝对值的和等于0,则这几个数就同时为0。4.有理数大小的比较 利用数轴比较两个数的大小:数轴上的两个数相比较,左边的总比右边的小; 利用绝对值比较两个负数的大小:两个负数比较大小,绝对值大的反而小; 异号两数比较大小,正数大于负数。5.绝对值的化简:当a0时, |a|=a ; 当a0时, |a|=-a 有理
7、数的加减法1.有理数的加法法则 同号两数相加,取相同的符号,并把绝对值相加; 绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝 对值减去较小的绝对值; 互为相反数的两数相加,和为零; 一个数与零相加,仍得这个数。2.有理数加法的运算律 加法交换律:a+b=b+a 加法结合律:(a+b)+c=a+(b+c)在运用运算律时,一定要根据需要灵活运用,以达到化简的目的,通常有下列规律: 互为相反数的两个数先相加“相反数结合法”; 符号相同的两个数先相加“同号结合法”; 分母相同的数先相加“同分母结合法”; 几个数相加得到整数,先相加“凑整法”; 整数与整数、小数与小数相加“同形结合法
8、”。3.加法性质 一个数加正数后的和比原数大;加负数后的和比原数小;加0后的和等于原数。即: 当b0时,a+ba 当b0时,a+ba 当b=0时,a+b=a4.有理数减法法则 减去一个数,等于加上这个数的相反数。用字母表示为:a-b=a+(-b)。5.有理数加减法统一成加法的意义 在有理数加减法混合运算中,根据有理数减法法则,可以将减法转化成加法后,再按照加法法则进行计算。6.有理数加减混合运算中运用结合律时的一些技巧:.把符号相同的加数相结合(同号结合法) (-33)-(-18)+(-15)-(+1)+(+23).把和为整数的加数相结合 (凑整法) (+6.6)+(-5.2)-(-3.8)+
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 苏教版七 年级 上册 期中 知识点 复习
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【天****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【天****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。