分享
分销 收藏 举报 申诉 / 5
播放页_导航下方通栏广告

类型高三应用题练习以及答案.doc

  • 上传人:精***
  • 文档编号:4041471
  • 上传时间:2024-07-26
  • 格式:DOC
  • 页数:5
  • 大小:105.88KB
  • 下载积分:6 金币
  • 播放页_非在线预览资源立即下载上方广告
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    应用题 练习 以及 答案
    资源描述:
    高三数学考前中档题突破——应用题 类型一、函数类应用题: 1.某养殖厂需定期购买饲料,已知该厂每天需要饲料200公斤,每公斤饲料的价格为1.8元,饲料的保管与其他费用为平均每公斤每天0.03元,购买饲料每次支付运费300元. 求该厂多少天购买一次饲料才能使平均每天支付的总费用最小; 解析:设该厂应隔x(x∈N+)天购买一次饲料,平均每天支付的总费用为y1元, ∵饲料的保管与其它费用每天比前一天少200×0.03=6(元),∴x天饲料的保管与其它费用共是6(x-1)+6(x-2)+…+6=3x2-3x(元). 从而有y1=(3x2-3x+300)+200×1.8=+3x+357≥417. 当且仅当=3x,即x=10时,y1有最小值. 即每隔10天购买一次饲料才能使平均每天支付的总费用最小. 类型二、图形类应用题 C B A 2.如图,游客从某旅游景区的景点处下山至处有两种路径.一种是从沿直线步行到,另一种是先从沿索道乘缆车到,然后从沿直线步行到.现有甲.乙两位游客从处下山,甲沿匀速步行,速度为.在甲出发后,乙从乘缆车到,在处停留后,再从匀速步行到.假设缆车匀速直线运动的速度为,山路长为,经测量,,. (1)求索道的长; (2)问乙出发多少分钟后,乙在缆车上与甲的距离最短? (3)为使两位游客在处互相等待的时间不超过分钟,乙步行的速度应控制在什么范围内? 解:(1)∵, ∴∴, ∴ 根据得 (2)设乙出发t分钟后,甲.乙距离为d,则 ∴ ∵即 ∴时,即乙出发分钟后,乙在缆车上与甲的距离最短. (3)由正弦定理得(m) 乙从B出发时,甲已经走了50(2+8+1)=550(m),还需走710 m 才能到达C 设乙的步行速度为V ,则 ∴∴ ∴为使两位游客在处互相等待的时间不超过分钟,乙步行的速度应控制在范围内 3.如图,摄影爱好者S在某公园A处,发现正前方B处有一立柱,测得立柱顶端O的仰角和立柱底部B的俯角均为.设S的眼睛距地面的距离按米. (1)求摄影者到立柱的水平距离和立柱的高度; (2)立柱的顶端有一长2米的彩杆MN绕其中点O在S与立柱所在的平面内旋转.摄影者有一视角范围为的镜头,在彩杆转动的任意时刻,摄影者是否都可以将彩杆全部摄入画面?说明理由. 解 (1) 如图,作SC垂直OB于C,则∠CSB=30°,∠ASB=60°. 又SA=,故在Rt△SAB中,可求得BA=3,即摄影者到立柱的水平距离为3米. 由SC=3,∠CSO=30°,在Rt△SCO中,可求得OC=. 因为BC=SA=,故OB=2,即立柱高为2米. (2)连结SM,SN,设ON=a,OM=b. 在△SON和△SOM中, =-,得a2+b2=26. cos∠MSN==≥=>. 又∠MSN∈(0,π), 则∠MSN<. 故摄影者可以将彩杆全部摄入画面. 类型三、不等式应用题 4.如图,已知矩形油画的长为a,宽为b.在该矩形油画的四边镶金箔,四个角(图中斜线区域)装饰矩形木雕,制成一幅矩形壁画.设壁画的左右两边金箔的宽为x,上下两边金箔的宽为y,壁画的总面积为S. (1)用x,y,a,b表示S; (2)若S为定值,为节约金箔用量,应使四个矩形木雕的总面积最大.求四个矩形木雕总面积的最大值及对应的x,y的值. 解:(1)壁画由9个小矩形构成,其面积为9个矩形的面积和,∴壁画的总面积为S=2bx+2ay+4xy+ab,x,y>0. (2)依题意,即求4xy的最大值. 因为x,y>0,所以2bx+2ay≥2,从而S≥4+4xy+ab,当且仅当bx=ay时等号成立 令t=,则t>0,上述不等式可以为4t2+4t+ab-S≤0,解得≤t≤因为t>0,所以t≤,从而xy≤. 由解得(舍去负值) 所以当x=,y=时,四个矩形木雕的总面积最大,最大值为ab+S-2. 类型四、数列应用题 5.为稳定房价,某地政府决定建造一批保障房供给社会.计划用1 600万元购得一块土地,在该土地上建造10幢楼房的住宅小区,每幢楼的楼层数相同,且每层建筑面积均为1 000平方米,每平方米的建筑费用与楼层有关,第x层楼房每平方米的建筑费用为(kx+800)元(其中k为常数) .经测算,若每幢楼为5层,则该小区每平方米的平均综合费用为1 270元. (每平方米平均综合费用=). (1)求k的值; (2)问要使该小区楼房每平方米的平均综合费用最低,应将这10幢楼房建成多少层?此时每平方米的平均综合费用为多少元? 【答案】【解】(1)如果每幢楼为5层,那么所有建筑面积为10×1 000×5平方米,所有建筑费用为[(k +800)+(2k +800)+(3 k +800)+(4k+800)+(5k +800)]×1 000×10,所以,…………………………3分 1 270=, 解之得:k=50.………………………………………………………6分 (2)设小区每幢为n(n∈N*)层时,每平方米平均综合费用为f (n),由题设可知 f (n) = =+25n+825≥2+825=1 225 (元). …………………10分 当且仅当=25n,即n=8时等号成立.………………12分 答:该小区每幢建8层时,每平方米平均综合费用最低,此时每平方米平均综合费用为1 225元.…………14分 6.关于某港口今后20年的发展规划,有如下两种方案: 方案甲:按现状进行运营.据测算,每年可收入760万元,但由于港口淤积日益严重,从明年开始需投资进行清淤,第一年投资50万元,以后逐年递增20万元. 方案乙:从明年起开始投资6000万元进行港口改造,以彻底根治港口淤积并提高吞吐能力.港口改造需用时4年,在此期间边改造边运营.据测算,开始改造后港口第一年的收入为320万元,在以后的4年中,每年收入都比上一年增长50%,而后各年的收入都稳定在第5年的水平上. (1)从明年开始至少经过多少年,方案乙能收回投资(累计总收益为正数)? (2)从明年开始至少经过多少年,方案乙的累计总收益超过方案甲?(收益=收入-投资) [解析](1)设从明年开始经过第n年,方案乙的 累计总收益为正数. 在方案乙中,前4年的总收入为 =2600<6000, 故n必定不小于5, 则由 2600+320·1.54(n-4)>6000, 解得n>6,故n的最小值为7. 答: 从明年开始至少经过7年,方案乙能收回投资. (2)设从明年开始经过n年方案甲与方案乙的累计总收益分别为y1, y2万元,则 y1=760n-50n+n(n-1)·20=-10n2+720n, 当n≤4时,则y1>0, y2<0,可得y1>y2. 当n≥5时,y2=2600+320·1.54(n-4)-6000=1620n-9880, 令y1<y2, 可得1620n-9880>-10n2+720n, 即n(n+90)>998,由10(10+90)>998, 9(9+90)<998, 可得n的最小值为10. 答:从明年开始至少经过10年,方案乙的累计总收益超过方案甲. 类型五、解析几何应用题 7.在相距1400米的A、B两哨所,听到炮弹爆炸声的时间相差3秒,已知声速是340米/秒,炮弹爆炸点在怎样的曲线上?并求出轨迹方程. B A O y x M 解:设爆炸t秒后A哨所先听到爆炸声,则B哨所t + 3秒后听到爆炸声,爆炸点设为M 则 |MA| = 340t, |MB| = 340( t + 3 ) = 340t + 1020 两式相减:|MA| - |MB| = 1020 (|AB| = 1400> 1020) ∴ 炮弹爆炸点的轨迹是以A、B为焦点的双曲线 以AB为x轴、AB中点为原点建立直角坐标系(如图) ∴ A(-700, 0 ), B( 700, 0 ) Þ c = 700 且 2a = 1020 Þ a = 510 Þ b2 =229900 炮弹爆炸的轨迹方程是: ( x > 0 ) 8.如图,某灾区的灾民分布在一个矩形地区,现要将救灾物资从P处紧急运往灾区. P往灾区有两条道路PA、PB,且PA=110公里,PB=150公里,AB= 50公里. 为了使救灾物资尽快送到灾民手里,需要在灾区划分一条界线,使从PA和PB两条路线到灾民所在地都比较近. 求出该界线的方程. M P A B 解:要使沿PA、PB两条线路到救灾地点都比较近,有三种情况: (1)沿PA线路 (2)沿PB线路 (3)沿PA、PB线路都相同 故分界线以第(3)种情况划分:即 |PA| + |MA| = |PB| + |MB| Þ 110 + |MA| = 150 + |MB| ∴ |MA|-|MB| = 40, 即知分界线是以A、B为焦点的双曲线 AB = 50 Þ 2c = 50 Þ c = 25, 2a = 40 Þ a = 20 Þ b2 = 225 若以AB为x轴、AB的中点为原点建立直角坐标系 则分界线方程是: (在矩形内的一段) 注意:确定分界线的原则是:从P沿PA、PB到分界线上点的距离.
    展开阅读全文
    提示  咨信网温馨提示:
    1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
    2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
    3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
    4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
    5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
    6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

    开通VIP折扣优惠下载文档

    自信AI创作助手
    关于本文
    本文标题:高三应用题练习以及答案.doc
    链接地址:https://www.zixin.com.cn/doc/4041471.html
    页脚通栏广告

    Copyright ©2010-2026   All Rights Reserved  宁波自信网络信息技术有限公司 版权所有   |  客服电话:0574-28810668    微信客服:咨信网客服    投诉电话:18658249818   

    违法和不良信息举报邮箱:help@zixin.com.cn    文档合作和网站合作邮箱:fuwu@zixin.com.cn    意见反馈和侵权处理邮箱:1219186828@qq.com   | 证照中心

    12321jubao.png12321网络举报中心 电话:010-12321  jubao.png中国互联网举报中心 电话:12377   gongan.png浙公网安备33021202000488号  icp.png浙ICP备2021020529号-1 浙B2-20240490   


    关注我们 :微信公众号  抖音  微博  LOFTER               

    自信网络  |  ZixinNetwork