初三圆的经典例题知识讲解.doc
《初三圆的经典例题知识讲解.doc》由会员分享,可在线阅读,更多相关《初三圆的经典例题知识讲解.doc(13页珍藏版)》请在咨信网上搜索。
1、此文档仅供收集于网络,如有侵权请联系网站删除 有关圆的经典例题 1. 分析:根据题意,需要自己画出图形进行解答,在画图时要注意AB与AC有不同的位置关系。 解:由题意画图,分AB、AC在圆心O的同侧、异侧两种情况讨论, 当AB、AC在圆心O的异侧时,如下图所示, 过O作ODAB于D,过O作OEAC于E, OAD=30,OAE=45,故BAC=75, 当AB、AC在圆心O同侧时,如下图所示, 同理可知OAD=30,OAE=45, BAC=15 点拨:本题易出现只画出一种情况,而出现漏解的错误。 例2. 如图:ABC的顶点A、B在O上,O的半径为R,O与AC交于D, (1)求证:ABC是直角三角形
2、; 分析:则AF=FB,ODAB,可证DF是ABC的中位线; (2)延长DO交O于E,连接AE,由于DAE=90,DEAB,ADF 解:(1)证明,作直径DE交AB于F,交圆于E 又AD=DC ABBC,ABC是直角三角形。 (2)解:连结AE DE是O的直径 DAE=90 而ABDE,ADFEDA 例3. 如图,在O中,AB=2CD,那么( ) 分析: 解:解法(一),如图,过圆心O作半径OFAB,垂足为E, 在AFB中,有AF+FBAB 选A。 解法(二),如图,作弦DE=CD,连结CE 在CDE中,有CD+DECE 2CDCE AB=2CD,ABCE 选A。 例4. 求CD的长。 分析:
3、连结BD,由AB=BC,可得DB平分ADC,延长AB、DC交于E,易得EBCEDA,又可判定AD是O的直径,得ABD=90,可证得ABDEBD,得DE=AD,利用EBCEDA,可先求出CE的长。 解:延长AB、DC交于E点,连结BD O的半径为2,AD是O的直径 ABD=EBD=90,又BD=BD ABDEBD,AB=BE=1,AD=DE=4 四边形ABCD内接于O, EBC=EDA,ECB=EAD 例5. 于H,交O于点E,交AC于点F,P为ED的延长线上一点。 (1)当PCF满足什么条件时,PC与O相切,为什么? 分析:由题意容易想到作辅助线OC, (1)要使PC与O相切,只要使PCO=9
4、0,问题转化为使OCA+PCF=FAH+AFH就可以了。 解:(1)当PC=PF,(或PCF=PFC)时,PC与O相切, 下面对满足条件PC=PF进行证明, 连结OC,则OCA=FAH, PC=PF,PCF=PFC=AFH, DEAB于H,OCA+PCF=FAH+AFH=90 即OCPC,PC与O相切。 即AD2=DEDF 点拨:本题是一道条件探索问题,第(1)问是要探求PCF满足什么条件时,PC与O相切,可以反过来,把PC与O相切作为条件,探索PCF的形状,显然有多个答案;第(2)问也可将AD2=DEDF作为条件,寻找两个三角形相似,探索出点D的位置。 例6. D作半圆的切线交AB于E,切点
5、为F,若AE:BE=2:1,求tanADE的值。 分析:要求tanADE,在RtAED中,若能求出AE、AD,根据正切的定义就可以得到。ED=EF+FD,而EF=EB,FD=CD,结合矩形的性质,可以得到ED和AE的关系,进一步可求出AE:AD。 解:四边形ABCD为矩形,BCAB,BCDC AB、DC切O于点B和点C, DE切O于F,DF=DC,EF=EB,即DE=DC+EB, 又AE:EB=2:1,设BE=x,则AE=2x,DC=AB=3x, DE=DC+EB=4x, 在RtAED中,AE=2x,DE=4x, 点拨:本题中,通过观察图形,两条切线有公共点,根据切线长定理,得到相等线段。 例
6、7. 已知O1与O2相交于A、B两点,且点O2在O1上, (1)如下图,AD是O2的直径,连结DB并延长交O1于C,求证CO2AD; (2)如下图,如果AD是O2的一条弦,连结DB并延长交O1于C,那么CO2所在直线是否与AD垂直?证明你的结论。 分析:(1)要证CO2AD,只需证CO2D=90,即需证D+C=90,考虑到AD是O2的直径,连结公共弦AB,则A=C,DBA=90,问题就可以得证。 (2)问题是一道探索性的问题,好像难以下手,不妨连结AC,直观上看,AC等于CD,到底AC与CD是否相等呢?考虑到O2在O1上,连结AO2、DO2、BO2,可得1=2,且有AO2CDO2C,故CA=C
7、D,可得结论CO2AD。 解:(1)证明,连结AB,AD为直径,则ABD=90 D+BAD=90 又BAD=C,D+C=90 CO2D=90,CO2AD (2)CO2所在直线与AD垂直, 证明:连结O2A、O2B、O2D、AC 在AO2C与DO2C中 O2BD=O2AC,又O2BD=O2DB,O2AC=O2DB O2C=O2C,AO2CDO2C,CA=CD, CAD为等腰三角形, CO2为顶角平分线,CO2AD。 例8. 如下图,已知正三角形ABC的边长为a,分别为A、B、C为圆心,积S。(图中阴影部分) 分析:阴影部分面积等于三角形面积减去3个扇形面积。 解: 分析:因三个扇形的半径相等,把
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 初三 经典 例题 知识 讲解
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【天****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【天****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。