统计学知识点(完整).doc
《统计学知识点(完整).doc》由会员分享,可在线阅读,更多相关《统计学知识点(完整).doc(9页珍藏版)》请在咨信网上搜索。
1、基本统计方法第一章 概论1. 总体(Population):根据研究目的确定的同质对象的全体(集合);样本(Sample):从总体中随机抽取的部分具有代表性的研究对象。2。 参数(Parameter):反映总体特征的统计指标,如总体均数、标准差等,用希腊字母表示,是固定的常数;统计量(Statistic):反映样本特征的统计指标,如样本均数、标准差等,采用拉丁字字母表示,是在参数附近波动的随机变量.3。 统计资料分类:定量(计量)资料、定性(计数)资料、等级资料。第二章 计量资料统计描述1. 集中趋势:均数(算术、几何)、中位数、众数2. 离散趋势:极差、四分位间距(QR=P75-P25)、标
2、准差(或方差)、变异系数(CV)3. 正态分布特征:X轴上方关于X=m对称的钟形曲线;X=m时,f(X)取得最大值;有两个参数,位置参数m和形态参数s;曲线下面积为1,区间ms的面积为68.27%,区间m1.96s的面积为95.00,区间m2.58s的面积为99。00%.4. 医学参考值范围的制定方法:正态近似法:;百分位数法:P2。5P97.5。第三章 总体均数估计和假设检验1. 抽样误差(Sampling Error):由个体变异产生、随机抽样造成的样本统计量与总体参数的差异。抽样误差不可避免,产生的根本原因是生物个体的变异性。2. 均数的标准误(Standard error of Mea
3、n, SEM):样本均数的标准差,计算公式:。反映样本均数间的离散程度,说明抽样误差的大小。3。 降低抽样误差的途径有:通过增加样本含量n;通过设计减少S。4. t分布特征:单峰分布,以0为中心,左右对称;形态取决于自由度n,n越小,t值越分散,t分布的峰部越矮而尾部翘得越高;当n逼近,逼近, t分布逼近u分布,故标准正态分布是t分布的特例.5。 置信区间(Confidence Interval, CI):按预先给定的概率(1a)确定的包含总体参数的一个范围,计算公式:或.95CI含义:从固定样本含量的已知总体中进行重复抽样试验,根据每个样本可得到一个置信区间,则平均有95%的置信区间包含了总
4、体参数。6。 假设检验的基本原理:小概率反证法的思想。反证法:从问题的对立面(H0)出发间接判断要解决的问题(H1)是否成立。小概率事件:在H0成立的条件下计算检验统计量,根据概率分布确定检验水准a下P值大小,判断是否为小概率事件(通常Pa视为小概率事件,a通常取0.05),是则拒绝H0,接受H1;否则尚不能拒绝H0。7. 假设检验一般步骤:建立假设(反证法,H0和H1),确定检验水准(a);计算统计量:u, t,F;确定概率值P,做出推断结论。8. t检验需满足的条件:比较的两个样本相互独立、均服从正态分布.9. P的含义:是指从H0规定的总体随机抽样,抽得等于及大于(或/和等于及小于)现有
5、样本获得的检验统计量(如t、u等)值的概率。10。 型错误(Type error):拒绝了实际上成立的H0,这类“弃真”的错误称为型错误,型错误的大小为检验水准a。型错误(Type error):接受了实际上不成立的H0,这类“存伪”的错误称为型错误,型错误的大小用b表示,1-b表示检验效能。a越小,b越大,增大样本量可以同时降低a和b。11. 置信区间和假设检验的区别和联系:可以通过判断置信区间是否包含零假设,判断单样本均数是否来自已知的总体;置信区间不但能回答差别有无统计学意义,还可提示差别有无实际意义.假设检验可提供置信区间不能提供的信息,如P值和检验效能等。第四章 方差分析1. 方差分
6、析的基本思想:根据研究目的和设计类型,把所有测量值的总变异按照处理因素和水平等分解成两部分(组内变异和组间变异)或更多部分,同时把对自由度相应进行分解,再进行比较,评价由处理因素引起的变异是否具有统计学意义。2. 方差分析的应用条件:各样本是相互独立的随机样本,均来自正态分布的总体,各样本的总体方差相等(具有方差齐性).3. 方差分析表:变异来源SSMSFP组间变异ag1a/(g-1)MS组间/MS组内组内变异bN-gb/(Ng)总变异a+bN14。 g=2时,随机区组设计的方差分析与配对设计资料t检验等价,.5. 多个样本均数间的多重比较:LSDt检验,即最小显著差异t检验,适用于一对或几对
7、在专业上有特殊意义的样本均数间的比较;Dunnett-t检验:适用于g1个实验组与一个对照组均数差别的多重比较;SNK-q检验:适用于多个样本均数两两之间的全面比较。第五章 计数资料的统计描述1. 相对数的类型:强度相对数(率,如死亡率、发病率等);结构相对数(构成比);相对比(如性别比等)2. 应用相对数的注意事项:结构相对数不能代替强度相对数;计算相对数应有足够的数量;正确计算合计率;注意资料的可比性;对比不同时期资料应注意客观条件是否相同;样本率(或构成比)的抽样误差.3。 标准化率(Standardization rate):采用标准化法进行计算,消除数据内部构成的差异,使标化后的合计
8、率具有可比性,这种经过标化后的合计率称为标准化率。4。 标准化率的注意事项:只适用于内部构成不同,影响总率的可比性的问题;选择的标准不同,计算得到的标准化率也不同,多个标准化率比较时,应选同一标准;标准化率已经不再反映当地的实际水平;样本标准化率是样本值,存在抽样误差.比较两样本标准化率,当样本量较小时,需做假设检验。第六章 几种离散型变量的分布及应用1。 二项分布XB(n, p)的适用条件:每次试验只发生两种对立的可能结果之一;每次试验产生某结果的概率p固定不变;重复试验是相互独立的。2。 二项分布的性质:阳性次数X的总体均数()、标准差();样本率p的均数()、标准差(,即率的标准误)。二
9、项分布的正态近似条件:np和n(1-p)均大于5。3. 泊松分布XP(l)的性质:总体均数l和总体方差s2相等;当n很大,p很小,且np= l为常数时,二项分布近似泊松分布;l20时,泊松分布近似正态分布;泊松分布具备可加性。第七章 c2检验1。 c2检验的基本思想:根据c2分布特征,通过比较实际频数与理论频数的差异,确定在H0成立的条件下该差异由抽样误差造成是否为小概率事件,进而判断差异是否具有统计学意义。c2值反映了实际频数与理论频数的吻合程度.2. RC列联表中的各格子T1,并且1T5的格子数不宜超过1/5格子总数,否则可能产生偏差。处理方法有三种:增加样本量,使理论频数增大;根据专业知
10、识,删除或合并行列;采用Fisher确切概率法分析。3. 有序分组资料表线性趋势检验:双向无序的RC列联表:多个样本率的比较采用RC列联表的c2检验;两个分类变量的关联性分析则采用RC列联表的c2检验和Pearson列联系数进行分析。单向有序的RC列联表:行有序而列无序:RC列联表的c2检验;行无序而列有序,采用Wilcoxon秩和检验。双向有序属性相同的RC列联表:配对四格表的扩展,采用一致性检验(Kappa检验).双向有序属性不同的RC列联表:样本率的比较采用Wilcoxon秩和检验;相关性分析采用Spearman相关分析;线性变化趋势分析采用有序分组资料的线性趋势检验或CMHc2检验等。
11、第八章 非参数检验1。 秩和检验的适用范围:总体分布偏态的计量资料;数据两端有不确定值;等级资料;各组离散程度相差悬殊,总体方差不齐的资料。2。 非参数检验对总体分布的形状差别不敏感,只对总体分布位置差别敏感;非参数检验没有充分利用资料信息,较参数检验的检验效低。故能用参数检验尽量采用参数检验,不满足参数检验条件才使用非参数检验。3. 不同数据类型的统计分析路径:(1)样本均数与总体均数的比较:正态,样本均数与总体均数的t检验;非正态,Wilcoxon符号秩检验.(2)两样本均数比较:独立正态:两独立样本t检验;独立非正态:两独立样本的Wilcoxon秩和检验;配对设计差值正态,配对t检验;配
12、对设计差值非正态,Wilcoxon符号秩检验.(3)多样本均数比较:独立正态(方差齐),方差分析;独立非正态 Kruskal-Wails H检验;非独立正态,重复测量资料的方差分析;非独立非正态,Friedman M检验第九章 双变量回归和相关1。 直线回归应满足的条件:自变量与因变量呈线性关系、观察值之间相互独立、因变量Y随机正态、对任何X因变量Y的标准差相等。直线回归方程的一般形式为:,为截距,为回归系数,回归系数的估计采用最小二乘法原则(Least Squares Method,使残差平方和最小)进行估计。2. 决定系数(coefficient of determination):回归平
13、方和与总平方和的比值,R2=SS回/SS总。R2取值01之间无单位,其数值大小反映回归贡献的相对程度,即总变异中回归模型能够解释的百分比.3。 秩相关的应用适用范围:(1)不服从双变量正态分布而不宜作Pearson相关分析;(2)总体分布型未知;(3)等级资料的相关分析。4。 相关与回归的区别与联系区别(1)区别: 资料:回归分析资料要求Y为正态随机变量,X为选定变量;相关分析资料X、Y服从双变量正态分布。 应用:回归分析是由一个变量值推算另一个变量值(依存关系);相关分析只反映两个变量间的相互关系. 回归系数b与原度量单位有关,而相关系数r无关.b的绝对值越大,回归直线越陡,即X变化1个单位
14、时Y的平均变化越大;r的绝对值越大,所有点越趋近于一条直线,两变量的关系越密切,相关度越高。(2)联系: r与b值可相互换算,; r与b正负号一致; r与b的假设检验等价:对于同一资料,检验完全等价; 回归可解释相关.相关系数的平方r2(决定系数)是回归平方和与总的离均差平方和之比(SS回/SS总)。5. 应用直线回归时的注意事项(1)作回归分析要有实际意义,不能把毫无关联的两种现象作回归分析,必须对两种现象间的内在联系有所认识.(2)在进行直线回归分析之前,应绘制散点图,当观察点的分布有直线趋势时,才适宜作直线回归分析,散点图还能提示资料有无异常点.异常点的存在往往对方程中的系数(a、b)的
15、估计产生较大影响.因此,需对异常点进行复查。(3)建立直线回归方程后,要对系数进行假设检验,以确定回归方程有无意义.(4)直线回归方程的适用范围一般以自变量的取值范围为限,避免外延。获得自变量值的手段也应与建立方程时相同.否则会产生较大偏差。第十章 统计表和统计图1. 统计表的基本要求(1)标题:概括表的主要内容(时间、地点、研究内容等),放在表的上方。表编号与标题间间隔一个汉字距离;如整个表指标统一,还应将指标的单位标在标题后面。(2)标目:分别用横标目和纵标目说明每行和每列内容或数字的意义,标明指标的单位.通常描述的对象为横标目,内容(指标)为纵标目,从左向右读可以构成完整的一句话.(3)
16、线条:至少用3条线:顶线、底线和纵标目线。顶线和底线将表格与文章其他部分分隔开,纵标目线将标目的文字区与表格的数字区隔开,还可用横线将合计和两重纵标目隔开,其他竖线和斜线一概省去。顶线和底线线条粗细一般为1。5磅,其他线条一般为0.5磅.(4)数字:用阿拉伯数字表示。无数字用“”表示,缺失数字用“”表示,数值为0者记为“0”,不留空项。数字按小数点位数对齐,同一指标最好保留相同位数的小数位数。(5)备注:表中数字区不要插入文字.必须说明者表“,在表下方以备注的形式说明.高级统计方法第十二章 重复测量资料的方差分析1. 重复测量设计与随机区组设计的区别:(1)重复测量设计中“处理”是在区组(受试
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 统计学 知识点 完整
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精***】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【精***】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。