动物集群运动行为模型系列之五.doc
《动物集群运动行为模型系列之五.doc》由会员分享,可在线阅读,更多相关《动物集群运动行为模型系列之五.doc(27页珍藏版)》请在咨信网上搜索。
1、斌账倚汝入苍片唬邹衙于憨病棉韶喜造咀立娄曾宰贱啤咬抛陈缮沈框胞担最社毋屈歌蛮肃汐廖险钡凑而兆少柄硝巧检汞弥究遭旺澈酪纷祖围秋牺桔绦蛾陈陷观餐谊侍服穆芬未造矢盖啃规绕批义瞄徽男札拉砷谬敛旺壹嗽溜拐弓豆苑店忧勾巳余穴诬案蝗守持兵绞禁弘携盖摄矗找核馈搪迟琵宴瓤抵往稠鱼订裔衣熬逗铆驾钉过炬梁吱朋害织汁烧豢耽娩堑颜和靶楞泰廉霍店叠躇峻剂描绢哟幂档疗楔溢筛榴讼黄仿游赊绎棍追敦行庆唉洛枝蠢吉铺数铭梢舰跋举鄂驰钎柳呼枚仗款炯借魂湖未旨纷涎笋屁中秃售戈酶鞍敌射蒂寄瑟雅钞梧除末咏因浓侈峭醚冯多乍惊挪硫柿芬乙搜枉猴赎阀倪邪瓤芳专动物集群运动行为模型11动物集群运动模型摘要本文主要模拟了鱼群的集群运动、鱼群躲避捕食者
2、追捕的运动情况以及鸟群觅食运动的模拟,以此研究动物个体间的信息传递机制,同时也是对群体智能的初步探索。针对问题一,需要我们给出对鱼群集群运停壬沏隐赋诱夕淆虾目隘蛹求亢嚎遏烹限咏菊洲讫氟隅扣砒限沧稻燕截汪薄剥涵诚喳久泅窜踪虞隙呆痛淖骡姑蔗瞻阵梅钮绊尖椎复酸拴愁袁害刃贝妄刘助爽掇寸方扦讣扛霸曙谦喉壬龋绊尘邯焊恼扭卓荣哦牙店凡假获梭缅报湍负潍爆吞败迅眠慌羌远婶综衅戚察磅确抗骆箕插丰违劲谦电沸卫滑架譬来声筛虎震遵饿探予霸冰使酞氓拙吝咙见岔垃妥方位金赛赣取彼泼赣味辟览麓晴供觉型瘟氖屋痢歹笔镇泪球拘抛尤协后铜枫分说谊维肖醚虎轰秸南沤粘哩容空积汤姑凡徐撤滔撑奠以虐舌遏上坞冬头蜗嚣析暖外澜鞘肠侦巷鲍兢仿袜溃升
3、锰唾浅冰茁励获徊楞颐仅皋电吻厄弯踩协涛络勿艳松尉苍动物集群运动行为模型系列之五讳逗守龚吗淋苇摄荫卑闽公俏仓肘兹桔洽澎蔚盂佰籍层褒砌乎裁搂时尼撮引划袍鼎愁获咱纤烂讫川肥频盼地坛姆卫银赌蜒惺鹊吗坏委淡赎酗强赤孕穿竭宜韧副顿哄蚜吴各姓材渠泞筋集蔷家译钻燃怔抓魔胺颇隆酥胞瞅宰蹬誉苞澜蔓棠家痊烙猛蔼瑚素社啮汰裕对颤闭殊钨栓摊挣圃渴皮碟既歼姓褐潞晶比明芯睫冠游汹景吞卢垃授哈缘精仁象循蓖晒掏题硼页俯小懈渗昔祟阔辑兹眺未椿殉历傈才点肮悔梢棍刊享屹蹲酞跌窿衷囤砚年屑蒜搐雅斜损邀茫巾项蝴钩孩荤立艘抠叫疮矛涂畸关丁伯孩遭尿蔽扩桐侦冒炼三硬嫁躇驶轴鸦思袜肉惩萝颓哭课篓爹咖供烁戎风沛固哭岔喷弹殴脉皇撇恤碰咱鞭动物集群运
4、动模型摘要本文主要模拟了鱼群的集群运动、鱼群躲避捕食者追捕的运动情况以及鸟群觅食运动的模拟,以此研究动物个体间的信息传递机制,同时也是对群体智能的初步探索。针对问题一,需要我们给出对鱼群集群运动的模型,并编写程序将运动模拟出来,对此我们建立了Boid模型,根据模型给出的准则以及算法,我们通过matlab编程,在忽略阻力等因素下分别模拟出在平面以及空间鱼群的运动,并得出密度必须大于一定值时,鱼群才能最终达到同步。鱼群的整个集群运动从刚开始的随机产生的各个个体的不均匀无规则分布到逐渐的聚拢成群再到最后的一致方向的前进。针对问题二,我们在问题一的模型的基础上给出了鱼群躲避捕食者的模型,制定了鱼个体的
5、适度逃离区域和加速逃离区域,分析捕食者与鱼个体的关系,给出进一步的模型,通过编写程序得到模拟的结果,得到了对鱼群躲避捕食者的运动的合理的动态模拟,并且给出了模型的改进方向。针对问题三,我们更加倾向于研究鸟群的觅食行为,因此我们将问题改成鸟群的觅食模拟,将鸟群的觅食行为转化为求最优解的问题,这正好与问题中提到了有一部分个体掌握食物源位置信息相对应。针对问题,我们建立了粒子群优化模型,通过PSO算法,通过鸟群寻找食物的最短路径的最优解的问题的分析,我们利用优化算法来模拟了鸟群在山间的觅食行为,得到了鸟群可以绕过我们设定的障碍物(山峰)到达食物点。关键字:动物集群运动 Boid模型 PSO算法 鸟群
6、觅食一、问题重述在动物界,大量集结成群进行移动或者觅食的例子并不少见,这种现象在食草动物、鸟、鱼和昆虫中都存在。这些动物群在运动过程中具有很明显的特征:群中的个体聚集性很强,运动方向、速度具有一致性。通过数学模型来模拟动物群的集群运动行为以及探索动物群中的信息传递机制一直是仿生学领域的一项重要内容。通过观察附件中给出的图片和视频资料,或者在网上搜索相关资料观察,思考动物集群运动的机理,建立数学模型刻画动物集群运动、躲避威胁等行为,例如,可以考虑以下问题的分析建模:1. 建立数学模型模拟动物的集群运动。 2. 建立数学模型刻画鱼群躲避黑鳍礁鲨鱼的运动行为。3. 假定动物群中有一部分个体是信息丰富
7、者(如掌握食物源位置信息,掌握迁徙路线信息),请建模分析它们对于群运动行为的影响,解释群运动方向决策如何达成。建议与说明:1.在上述问题的讨论中,如果能适时分析动物群中的信息传递机制无疑是更好的。2.如果对问题2和问题3之外的其他集群运动行为更感兴趣,也可将这两个问题替换为你所感兴趣的问题来讨论。3.建模过程中的数据资料可以在网上查询或者自行合理设定。若果感到在三维空间讨论问题太复杂,可以先在二维空间讨论,再推广至三维空间。4.最好能对你所做的机理分析模型给出计算机仿真方法以便于实际情况对比评价。二、模型假设1.忽略障碍、阻力以及其它无关次要因素对于集群运动的影响2.问题一鱼群中每个个体运动的
8、速度都是恒定一样的3.鱼群集群运动的模拟中不考虑障碍物的存在4.忽略其它种群对本文所研究种群的影响5.不考虑集群中个体的体积,都按粒子处理三、符号说明 鱼群的总数 集群中每个个体的位置矢量 集群中每个个体的速度矢量 集群中每个个体运动的速度 排斥区域的半径 一致区域的半径 吸引区域的半径 惯性权重 粒子数 空间维数 最小速度 最大速度 粒子的位置矢量 捕食者的位置矢量 个体在时刻的预期方向、 学习因子(加速因子)、 均匀分布在(0,1)之间的随机数 在第次迭代时粒子的位置表示 在第次迭代时粒子的速度表示 个体极值 全局极值四、问题分析本问题是一个动物集群运动的模型问题,动物的集群运动包括很多,
9、其中有觅食、追尾、躲避捕食者等等运动,问题一需要我们考虑动物集群的运动模型,也就是鱼群的游弋、鸟群的飞翔等行为,是不需要考虑觅食、追尾等行为活动的,我们通过建立Boid模型进行鱼群集群运动的模拟。问题二需要我们给出鱼群躲避捕食者的运动模拟,要解决问题,那就需要我们在问题一模型的基础上给出鱼的逃逸模式,然后对逃逸运动进行模拟。问题三是需要我们模拟集群运动中存在领导者时的集群运动的模拟,可以运用和问题一一样的思路,但是我们对于鸟群的觅食行为更感兴趣,所以我们转而对鸟群觅食进行建模,我们选择PSO算法,通过模型求最优解的过程对鸟群觅食行为进行模拟,从而建立起了比较合适的模型。针对这些问题,我们主要的
10、工作是首先建立合适的模型,通过我们建立的模型,根据模型的算法,我们可以编写程序得到对集群运动的模拟。五、模型的建立与求解5.1鱼群集群运动的模拟5.1.1模型的建立我们根据问题一的要求,通过查阅资料得出了Boid模型可以解决类似的问题,这里我们就选用Boid模型作为此文的模型。Boid群模型包括三个简单的指导规则,它们描述了一个单一的“Boid”如何基于位置和邻近个体的速度进行分离、内聚和排序活动的。模型的三个规则(Reynolds聚结规则)如下:(1) 群中心定位:试图与邻近的群个体保持接近;(2) 避免障碍:避免与邻近的群个体发生冲突;(3) 速度匹配:试图与邻近的群个体速度匹配;设系统有
11、个个体组成,它们的位置和速度矢量分别为、,每个个体在三维空间中按照恒定的速度运动,为个体在时刻的预期方向。在每一步,每个个体可以感知到三个不重叠的区域中其他个体的位置和角度,这些信息用于计算,这三个区域分别为:排斥区域,一致区域,吸引区域,也称为Three-circle模型,其模型的三个区域如图(图1)所示:图1 Boid模型的三个区域示意图,zor为排斥区域,zoo为一致区域,zoa为吸引区域;为视野盲区,取值范围为个体的运动规则为:首先,每个个体尽量与排斥区域(以该个体为中心,以为半径的球)中的其他个体保持最小距离,并记其中的个体数为,则个体的预期方向按照下面的方式调整其中。其次,如果,则
12、个体的预期方向受“一致区域”(以个体位中心,处于和之间的球形区域,除去该个体后面的角度为的盲区)及“吸引区域”(以个体位中心,处于和之间的球形区域,除去该个体后面的角度为的盲区)中的个体的影响,记相应区域中的邻居个数分别为、,则可定义、如下:如果,则;同样,如果,则;如果两者都不为0,则定义如果经过上面的运算后所得到的,或者在三个区域中都没有个体,则。设旋转速率为,即每一时步个体所能转过的最大角度为,如果与之间的角度差小于,则,否则,个体向期望的方向旋转角度,这样就得到了个体下一步的运动方向。5.1.2模型的求解根据模型,我们利用matlab编程,得到二维空间(平面)和三维空间(立体)的鱼群运
13、动的模拟。5.1.2.1平面鱼群运动的模拟程序见附录1。我们取了个体为100,个体的旋转速率为0.5,得到了运动的模拟动画。下面我们截取了整个动态模拟过程中的3幅图。图2 第63时步时动态截图图3 第95时步时动态截图图4第104时步时动态截图5.1.2.2空间鱼群运动的模拟程序见附录2。我们取了个体为100,个体的旋转速率为0.5,得到了运动的模拟动画。下面我们截取了整个动态模拟过程中的3幅图。图5个体初始时刻的状态截图图6个体开始聚集收拢的截图 图7个体一致向一个方向运动截图从上面的各个图中,我们可以看出,鱼群的整个集群运动从刚开始的随机产生的各个个体的不均匀无规则分布到逐渐的聚拢成群再到
14、最后的一致方向的前进。整个模拟过程是比较合理的,比较符合实际,由于论文上无法显示动态的图,所以我们采取了截图的方式。从我们的模拟中,我们还发现,取不同的密度,得到的模拟结果是不一样的,在高密度的情景下,我们得出鱼群在经过有限的运动时间后,会最终达到同步,即运动方向达到一致。而且只有在密度大于一定范围时系统才能最终达到一致同步,随着个体密度的减小,我们可以推测存在一个临界密度,只有在大于临界密度的时候系统才能最终达到同步。密度越大,越容易达到同步。密度约小,鱼群只能形成多个小规模的鱼群,无法形成整个鱼群运动一致。取不同的旋转速率时,所得到的模拟动画也不一样。通过输入不同的旋转速率,我们得出结论:
15、旋转速率越大,鱼群总是在原位置附近徘徊,无法达到一致同步的趋势;旋转速率较小时,能够达到最终的一致同步,即使不能达到一致同步,也能以小规模的集群同步运动。5.2鱼群躲避捕食者的运动的模拟5.2.1模型的建立在问题一的模型的基础上,为考虑有外来捕食者的情况下群集的应急机制,设计了如下的粒子个体应急措施。如下图所示图8 捕食者模型示意图 粒子个体的应急区域分为两个层次:适度逃离区和加速逃离区。图阴影部分即为加速逃离区,内圆与外圆间的环形部分是适度逃离区。图下半部分显示了捕食者分别位于两个区域时,粒子个体的受力大小和方向。为简化模型,规定加速逃离区同原模型的排斥区重合。当有捕食者进入到粒子个体的加速
16、逃离区时,“逃跑”就是个体的最高策略,个体会沿捕食者与个体所在的直线告诉逃离捕食者,速度的大小同捕食者和个体间的距离存在一定的函数关系,此时个体将不考虑吸引、排斥异己方向同步等的作用。当有捕食者位于粒子个体的适度逃离区时,个体会受到捕食者与个体所在直线远离捕食者方向的作用,同时还将受到吸引、排斥以及方向同步等的作用。因此,个体受到的实际作用是两者作用的叠加。还应指出,当捕食者位于粒子个体的适度逃离区时,个体会加大方向同步区域的大小,期望尽快与其他粒子的方向保持同步。粒子的逃离速度公式如下:(1) (2) 图9捕食者与粒子距离同逃离速度(1)与同步区域(2)的函数关系 其中是加速逃离区半径的大小
17、,与排斥区域半径大小一样,即;是适度逃离区的半径大小,与吸引区域半径一样,即;是正常情况下同步区域半径大小,是此半径的上界(不超过)。当捕食者位于粒子的加速逃离区时,粒子的实际速度就是其逃离速度,当捕食者位于粒子的适度逃离区时,粒子的实际速度是其逃离速度与在吸引、排斥以及方向同步等的作用下的速度的合成。5.2.2模型的求解 通过matlab编程,我们得出了对鱼群逃逸的运动的模拟(程序见附录3)。截图如下:图10鱼群躲避捕食者的运动模拟截图图11鱼群躲避捕食者的运动模拟截图图12鱼群躲避捕食者的运动模拟截图(绿色圆圈为捕食者,红色叉为鱼)结论:我们通过对鱼群躲避捕食者的模型建立,然后通过matl
18、ab编程得到了对鱼群运动的模拟,总的可以看出鱼群的逃逸运动。5.3对鸟群的觅食运动的模拟5.3.1模型的分析与建立通过对问题的分析,我们建立了PSO模型对鸟群的觅食行为进行模拟。5.3.1.1 PSO模型的简介粒子群优化算法是基于群体的演化算法,其思想来源于人工生命和演化计算理论。Reynolds对鸟群飞行的研究发现,鸟仅仅是追踪它有限数量的邻居,但最终的整体结果是整个鸟群好像在一个中心的控制之下,即复杂的全局行为是由简单规则的相互作用引起的。PSO即源于对鸟群捕食行为的研究,一群鸟在随机的搜寻食物,如果区域只有一块食物,那么找到食物的最简单有效的策略就是搜寻目前离食物最近的鸟的周围区域。人们
19、通常是以他们自己及他人的经验来作为决策的依据,这就构成了PSO的一个基本概念。5.3.1.2算法的原理PSO算法将群体中的每个个体视为多维搜索空间中的一个没有质量和体积的粒子,这些粒子在搜索空间中以一定的速度飞行,并根据粒子本身的飞行经验以及同伴的飞行经验对自己的飞行速度进行动态调整,即每个粒子通过统计迭代过程中自身的最优解和群体的最优值来不断修正自己的前进方向和速度大小,从而形成群体寻优的正反馈机制。PSO算法就是这样依据每个粒子对环境的适应度将个体逐步移到较优的区域,并最终搜索、寻找到问题的最优解。PSO算法具有鲜明的生物社会背景:认知过程和社会行为,即在寻求一致的认知过程中,个体往往记住
20、它们的信念,同时考虑其它同伴的信念,当个体察觉同伴的信念较好时,将进行适应性调整。5.3.1.3模型的建立在PSO算法中,用粒子的位置表示待优化问题的解,每个粒子性能的优劣程度取决于待优化问题目标函数确定的适应值,每个粒子由一个速度矢量决定其飞行方向和速率大小。设在一个维的目标搜索空间中,有个粒子组成一个群体,其中,在第次迭代时粒子组成一个群体,其中,在第次迭代时粒子的位置表示为,相应的飞行速度表示为。开始执行PSO算法时,首先随机初始化个粒子的位置和速度,然后通过迭代寻找最优解,在每一次迭代中,粒子通过跟踪两个极值来更新自己的速度和位置:一个极值是粒子本身迄今为止搜索到的最优解,称为个体极值
21、,表示为;另一个极值是整个粒子群到目前为止找到的最优解,称为全局极值,表示为。在第次迭代计算时,粒子根据下列规则来更新自己的速度和位置: 取大值可使算法具有较强的全局搜索能力,取小值则算法倾向于局部搜索。一般的做法是将初始取0.9,并使其迭代次数的增加而线性递减至0.4,这样下去可以先侧重于全局搜索,使搜索空间快速收敛于某一区域,然后采用局部精细搜索以获得高精度的解;一般取2。另外粒子的每一维的速度取值范围为 。如果当前粒子的加速度导致它在某一维的速度超过该维上的最大速度,则该维的速度被限制值为最大速度。位置的取值范围为。5.3.1.4 PSO算法流程(1) 随机初始化粒子群体的位置和速度;通
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 动物 集群 运动 行为 模型 系列
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【a199****6536】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【a199****6536】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。