新版北师大版数学九年级下册教案(全).doc
《新版北师大版数学九年级下册教案(全).doc》由会员分享,可在线阅读,更多相关《新版北师大版数学九年级下册教案(全).doc(57页珍藏版)》请在咨信网上搜索。
1、第一章 直角三角形的边角关系第1课时1.1.1 锐角三角函数教学目标1、 经历探索直角三角形中边角关系的过程2、 理解锐角三角函数(正切、正弦、余弦)的意义,并能够举例说明3、 能够运用三角函数表示直角三角形中两边的比4、 能够根据直角三角形中的边角关系,进行简单的计算教学重点和难点重点:理解正切函数的定义难点:理解正切函数的定义教学过程设计 从学生原有的认知结构提出问题直角三角形是特殊的三角形,无论是边,还是角,它都有其它三角形所没有的性质。这一章,我们继续学习直角三角形的边角关系。 师生共同研究形成概念1、 梯子的倾斜程度在很多建筑物里,为了达到美观等目的,往往都有部分设计成倾斜的。这就涉
2、及到倾斜角的问题。用倾斜角刻画倾斜程度是非常自然的。但在很多实现问题中,人们无法测得倾斜角,这时通常采用一个比值来刻画倾斜程度,这个比值就是我们这节课所要学习的倾斜角的正切。1) (重点讲解)如果梯子的长度不变,那么墙高与地面的比值越大,则梯子越陡; 2) 如果墙的高度不变,那么底边与梯子的长度的比值越小,则梯子越陡;3) 如果底边的长度相同,那么墙的高与梯子的高的比值越大,则梯子越陡;通过对以上问题的讨论,引导学生总结刻画梯子倾斜程度的几种方法,以便为后面引入正切、正弦、余弦的概念奠定基础。2、 想一想(比值不变) 想一想 书本P 2 想一想通过对前面的问题的讨论,学生已经知道可以用倾斜角的
3、对边与邻边之比来刻画梯子的倾斜程度。当倾斜角确定时,其对边与邻边的比值随之确定。这一比值只与倾斜角的大小有关,而与直角三角形的大小无关。3、 正切函数(1) 明确各边的名称(2)(3) 明确要求:1)必须是直角三角形;2)是A的对边与A的邻边的比值。 巩固练习 a、 如图,在ACB中,C = 90,1) tanA = ;tanB = ;2) 若AC = 4,BC = 3,则tanA = ;tanB = ;3) 若AC = 8,AB = 10,则tanA = ;tanB = ;b、 如图,在ACB中,tanA = 。(不是直角三角形)(4) tanA的值越大,梯子越陡4、 讲解例题例1 图中表示
4、甲、乙两个自动扶梯,哪一个自动扶梯比较陡?分析:通过计算正切值判断梯子的倾斜程度。这是上述结论的直接应用。例2 如图,在ACB中,C = 90,AC = 6,求BC、AB的长。分析:通过正切函数求直角三角形其它边的长。 随堂练习5、 书本 P 4 随堂练习 小结正切函数的定义。 作业 书本 P4 习题1.1 1、2、4。第2课时1.1.2 锐角三角函数教学目标5、 经历探索直角三角形中边角关系的过程6、 理解锐角三角函数(正切、正弦、余弦)的意义,并能够举例说明7、 能够运用三角函数表示直角三角形中两边的比8、 能够根据直角三角形中的边角关系,进行简单的计算教学重点和难点重点:理解正弦、余弦函
5、数的定义难点:理解正弦、余弦函数的定义教学过程设计 从学生原有的认知结构提出问题上一节课,我们研究了正切函数,这节课,我们继续研究其它的两个函数。 复习正切函数 师生共同研究形成概念6、 引入书本 P 7 顶7、 正弦、余弦函数, 巩固练习 c、 如图,在ACB中,C = 90,1) sinA = ;cosA = ;sinB = ;cosB = ;2) 若AC = 4,BC = 3,则sinA = ;cosA = ;3) 若AC = 8,AB = 10,则sinA = ;cosB = ;d、 如图,在ACB中,sinA = 。(不是直角三角形)8、 三角函数锐角A的正切、正弦、余弦都是A的三角
6、函数。9、 梯子的倾斜程度sinA的值越大,梯子越陡;cosA的值越大,梯子越陡10、 讲解例题例3 如图,在RtABC中,B = 90,AC = 200,求BC的长。分析:本例是利用正弦的定义求对边的长。例4 如图,在RtABC中,C = 90,AC = 10,求AB的长及sinB。分析:通过正切函数求直角三角形其它边的长。 随堂练习11、 书本 P 随堂练习 小结正弦、余弦函数的定义。 作业 书本 P 6 习题1、 2、3、4、5第3课时1. 2 30、45、60角的三角函数值教学目标9、 经历探索30、45、60角的三角函数值的过程,能够进行有关推理,进一步体会三角函数的意义10、 能够
7、进行含有30、45、60角的三角函数值的计算11、 能够根据30、45、60角的三角函数值,说出相应的锐角的大小教学重点和难点重点:进行含有30、45、60角的三角函数值的计算难点:记住30、45、60角的三角函数值教学过程设计 从学生原有的认知结构提出问题上两节课,我们研究了正切、正弦、余弦函数,这节课,我们继续研究特殊角的三角函数值。 师生共同研究形成概念12、 引入书本 P 8引入本节利用三角函数的定义求30、45、60角的三角函数值,并利用这些值进行一些简单计算。13、 30、45、60角的三角函数值通过与学生一起推导,让学生真正理解特殊角的三角函数值。度数sincostan30451
8、60 要求学生在理解的基础上记忆,切忌死记硬背。14、 讲解例题例5 计算:(1)sin30+ cos45; (2); (3); (4)。分析:本例是利用特殊角的三角函数值求解。例6 填空:(1)已知A是锐角,且cosA = ,则A = ,sinA = ; (2)已知B是锐角,且2cosA = 1,则B = ; (3)已知A是锐角,且3tanA = 0,则A = ;例7 一个小孩荡秋千,秋千链子的长度为2.5m,当秋千向两边摆动时,摆角恰好为60,且两边的摆动角相同,求它摆至最高位置时与其摆至最低位置时的高度之差。分析:本例是利用特殊角的三角函数值求解的具体应用。例8 在RtABC中,C =
9、90,求,B、A。分析:本例先求出比值后,利用特殊角的三角函数值,再确定角的大小。 随堂练习15、 书本 P 9 随堂练习 小结 要求学生在理解的基础上记忆特殊角的三角函数值,切忌死记硬背。 作业 书本 P 9 习题1.3 1、2、3、4、1.3三角函数的有关计算教学目标:1、经历用计算器由三角函数值求相应锐角的过程,进一步体会三角函数的意义2、能够运用计算器辅助解决含三角函数值计算的实际问题教学重点1经历用计算器由三角函数值求相应锐角的过程,进一步体会三角函数的意义2能够利用计算器进行有关三角函数值的计算教学难点把实际问题转化为数学问题教学过程:一、导入新课 生活中有许多问题要运用数学知识解
10、决。本节课我们共同探讨运用三角函数解决与直角三角形有关的简单实际问题1.3、三角函数的有关计算二、讲授新课引入问题1:会当凌绝顶,一览众山小,是每个登山者的心愿。在很多旅游景点,为了方便游客,设立了登山缆车。如图,当登山缆车的吊箱经过点A到达点B时,它走过了200m,已知缆车行驶的路线与水平面的夹角。那么缆车垂直上升的距离是多少?分析:在RtABC中,30,AB=200米,需求出BC. 根据正弦的定义,sin30=,BCABsin30200 =100(米).引入问题2:当缆车继续由点B到达点D时,它又走过了200 m,缆车由点B到点D的行驶路线与水平面的夹角是45,由此你能想到还能计算什么?分
11、析:有如下几种解决方案:方案一:可以计算缆车从B点到D点垂直上升的高度.方案二:可以计算缆车从A点到D点,垂直上升的高度、水平移动的距离.三、变式训练,熟练技能1、一个人从山底爬到山顶,需先爬40的山坡300 m,再爬30的山坡100 m,求山高.( sin400.6428,结果精确到0.01 m)解:如图,根据题意,可知BC=300 m,BA=100 m,C=40,ABF=30.在RtCBD中,BD=BCsin403000.6428192.84(m);在RtABF中,AF=ABsin30=100=50(m).所以山高AE=AF+BD192.8+50242.8(m).2、求图中避雷针的长度 。
12、(参考数据:tan561.4826,tan501.1918)解:如图,根据题意,可知AB=20m,CAB=50,DAB=56在RtDBA中,DB=ABtan56 201.482629.652(m);在RtCBA中,CB=ABtan50 201.1918=23.836(m).所以避雷针的长度DC=DB-CB29.652-23.8365.82(m).四、合作探究随着人民生活水平的提高,农用小轿车越来越多,为了交通安全,某市政府要修建10m高的天桥,为了方便行人推车过天桥,需在天桥两端修建40m长的斜道(如图所示)。 这条斜道的倾斜角是多少?探究1:在RtABC中,BC m,AC m, sinA 探
13、究2:已知sinA的值,如何求出A的大小? 请阅读以下内容,学会用计算器由锐角三角函数值求相应锐角的大小已知三角函数求角度,要用到sin、cos、tan键的第二功能“sin1,cos1,tan1”和2ndf键探究3:你能求出上图中A的大小吗?解:sinA (化为小数),三、巩固训练1、如图,工件上有一V形槽,测得它的上口宽20mm,深19.2mm,求V形角(ACB)的大小(结果精确到1) 2、 如图,一名患者体内某重要器官后面有一肿瘤在接受放射性治疗时,为了最大限度地保证疗效,并且防止伤害器官,射线必须从侧面照射肿瘤已知肿瘤在皮下6.3cm的A处,射线从肿瘤右侧9.8cm的B处进入身体,求射线
14、的入射角度3、某段公路每前进1000米,路面就升高50米,求这段公路的坡角 4、一梯子斜靠在一面墙上已知梯长4m,梯子位于地面上的一端离墙壁2.5m,求梯子与地面所成的锐角五、随堂练习:P,14 1、2、3、4、六、作业:p15 1至6题1.4解直角三角形一、教学目标1.知道解直角三角形的概念、理解直角三角形中五个元素的关系。2.通过综合运用勾股定理,掌握解直角三角形,逐步形成分析问题、解决问题的能力.3渗透数形结合的数学思想,养成良好的学习习惯二、教学重点及难点教学重点:掌握利用直角三角形边角关系解直角三角形教学难点:锐角三角比在解直角三角形中的灵活运用三、教学用具准备黑板、多媒体设备.四、
15、教学过程设计一、创设情景 引入新课:如图所示,一棵大树在一次强烈的地震中倒下,树干断处离地面3米且树干与地面的夹角是30。大树在折断之前高多少米? 由30直角边等于斜边的一半就可得AB=6米。分析树高是AB+AC=9米。由勾股定理容易得出BC的长为3 米。当然对于特殊锐角的解题用几何定理比较简单,也可以用锐角三角函数来解此题。二、知识回顾问题:1在一个三角形中共有几条边?几个内角?(引出“元素”这个词语)2直角三角形ABC中,C=90,a、b、c、A、B这五个元素间有哪些等量关系呢?讨论复习师白:RtABC的角角关系、三边关系、边角关系分别是什么?总结:直角三角形的边、角关系(板书)(PPT)
16、(1)两锐角互余AB90;(2)三边满足勾股定理a2b2c2;(3)边与角关系三、学习新课、例题分析例题1 在RtABC中,C=900,B=380,a=8,求这个直角三角形的其它边和角.分析:如图,本题已知直角三角形的一个锐角和一条直角边,那么首先要搞清楚这两个元素的位置关系,再分析怎样用合适的锐角三角比解决问题,在本题中已知边是已知角的邻边,所以可以用的锐角三角比是余弦和正切.(板书)解:C=900 A +B=900A=900B=900380=520cosB= c= =tanB=b=atanB=8tan3806.250另解:cotB= b= 注意:在解直角三角形的过程中,常会遇到近似计算,除
17、特别说明外,边长保留四个有效数字.学习概念定义:在直角三角形中,由已知元素求出所有未知元素的过程,叫做解直角三角形.例题分析例题2 在RtABC中,C=900,c=7.34,a=5.28,解这个直角三角形.分析:本题如图,已知直角三角形的一条直角边和斜边,当然首先用勾股定理求第三边,怎样求锐角问题,要记住解决问题最好用原始数据求解,避免用间接数据求出误差较大的结论.(板书)解:C=900,a2b2c2b=sinA=A 460 0B=900A900460 0=440 0.例题3(见教材p16)注意:在解直角三角形的过程中,常会遇到近似计算,除特别说明外,边长保留四个有效数字,角度精确到1。4、学
18、会归纳通过上述解题,思考对于一个直角三角形,除直角外的五个元素中,至少需要知道几 个元素,才能求出其他元素?想一想:如果知道两个锐角,能够全部求出其他元素吗?如果只知道五个元素中的一个元素,能够全部求出其他元素吗?归纳结论:在直角三角形中,除直角外还有五个元素,知道两个元素(至少有一个是边),就可以求出其余三个元素.说明 我们已掌握RtABC的边角关系、三边关系、角角关系,利用这些关系,在知道其中的两个元素(至少有一个是边)后,就可求出其余的元素这样的导语既可以使学生大概了解解直角三角形的概念,同时又陷入思考,为什么两个已知元素中必有一条边呢?激发了学生的学习热情5、请找出题中的错误,并改正已
19、知:如图,在RtABC中, C=90,由下列条件,解直角三角形:(结果保留根号) 1.5三角函数的应用教学目标: 1.经历探索船是否有触礁危险的过程,进一步体会三角函数在解决问题过程中的应用. 2.能够把实际问题转化为数学问题,能够借助于计算器进行有关三角函数的计算,并能对结果的意义进行说明.教学重点: 1.经历探索船是否有触礁危险的过程,进一步体会三角函数在解决问题过程中的作用. 2.发展学生数学应用意识和解决问题的能力.教学难点:根据题意,了解有关术语,准确地画出示意图.教学用具:小黑板 三角板教学方法:探索发现法教学过程一、问题引入:海中有一个小岛A,该岛四周10海里内有暗礁.今有货轮由
20、西向东航行,开始在A岛南偏西55的B处,往东行驶20海里后,到达该岛的南偏西25的C处,之后,货轮继续往东航行,你认为货轮继续向东航行途中会有触礁的危险吗?你是如何想的?与同伴进行交流.二、解决问题:1、如图,小明想测量塔CD的高度.他在A处仰望塔顶,测得仰角为30,再往塔的方向前进50m至B处.测得仰角为60.那么该塔有多高?(小明的身高忽略不计,结果精确到1 m)2、某商场准备改善原来楼梯的安全性能,把倾角由40减至35,已知原楼梯长为4 m,调整后的楼梯会加长多少?楼梯多占多长一段地面?(结果精确到0.0l m)【作业设计】 1.如图,一灯柱AB被一钢缆CD固定,CD与地面成40夹角,且
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 新版 北师大 数学 九年级 下册 教案
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【丰****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【丰****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。