电芯设计与工艺问答总结.doc
《电芯设计与工艺问答总结.doc》由会员分享,可在线阅读,更多相关《电芯设计与工艺问答总结.doc(49页珍藏版)》请在咨信网上搜索。
1、软包电池封装(201209-12 10:30:20) 1、 热封机的封条用什么材料好?怎样解决热封上,下模之间的平整性问题?怎样解决热封上,下模之间使用过程中发生的偏移?一般都是使用黄铜,因为导热性和耐冲击性都比较好;虽然使用特氟龙可以弥补铜封头不平整,但使用起来就会发觉并不能达到理想值.建议可以在加工铜封头的同时进行高温平磨,使其在工作温度内达到上下面的平行。封出的产品自然没有折皱;有两种可能性,第一是安装位置问题,检查铜封头的位子上、下是否平行:第二可能是铜封头平整性问题,一般铜封头在高温受热会有一定的变形现象;2、 二封整体封头到底实用不实用?二封加Stopper的封头如何监控才能保证封
2、装过程中不因杂质等粘在封头上造成封装不良?整體封頭對於批量性生產適用,批量小,型號差異大不建議使用,因为调节起来很麻烦。3、 电池热封边时有一大的隐患,即封口时模头与电芯主体(侧边)没有距离控制,容易将模头压到电芯上或对侧边形成挤压,造成铝塑膜不同程度的损坏,后续电池出现气胀,如何解決?几乎全球所有的生产厂家都无法杜绝膨胀的现象,看的是不良的一个比率。,好一点的厂家现在差不多是万分之几的膨胀率,但是在行业上一般都是签协议为千分之三的不良率.4、 用113的铝膜冲壳深度是多少?铝膜的延伸率是多少?有关铝层厚度与漏液关系?拉伸程度与铝层厚度及铝的拉伸能力有关,据文献报导铝层厚度低于15um将大大提
3、高铝层出现针孔的概率,这将引起水的进入,引起电池气胀,所以冲壳不能冲的太狠。(另有说法不是15而是24,即拉伸率60 此时长时间存放就会出现鼓气的可能,建议在冲壳时控制拉伸率为70) 外因刺破的现象有,但决不是最主要原因,大部分是R角处形成了二次拉伸后,形成小孔,可以做一下电池的横截面的铝层厚度分布图看看。5、 软包电池注液后一般先抽真空封口,再转化成的工序,这里一定要抽真空封口吗?不抽真空对后面化成有什么影响?觉得这个工步没什么明显效果,而且还有可能倒置抽出电解液,使之减少,化成后抽真空工序比较实用. 注液后是不是要先静置一段时间再抽真空:如果是,那么真空度和时间一般应控制在多少,是否需要控
4、制电液中气体的挥发量?如果否,为什么?6、 软包冲模时,有R1、R2、R3三个参数,这三个参数都代表什么?a.看材质b。看材质表面光滑程度c。最重要的是R角但是3者是互相关联的冲模需控制R1R2=R3 才不致冲破产生针孔,。间隙控制在0。250mm(2倍ALF厚)。R角和冲深、成型尺寸及ALF有关系,一般冲深在4mm以下,R角取1。5mm,5以上取2mm,小型号为保 证外观R角需减小;型号越小,底部供补偿面积越小,冲深就越浅,软包装的冲壳模心的角度与R的大小要依成型面积/深度而定,一般上下模单边间隙在 0.15-0。3mm,R为1.5-3。5mm,为保证4角安全不破损,R尽可能大。7、 软包装
5、电芯的铝塑膜有那几部分组成?各自的作用是什麽?通常是5层的,由里向外依次为 PP层/胶层/铝箔层/胶层/尼龙层。作为好的铝塑膜还有更多的层结构,例如DNP的152厚铝塑膜带上胶有6层:ON25/DL4/AL40/ND3/CPP30/PP50。Nylon :可以有效阻止空气尤其是氧的渗透,维持电芯内部的环境,同时可以保证包装铝箔具备良好的形变能力.Al :可以有效阻止空气中水分的渗透,维持电芯内部的环境,具有一定的厚度强度能够防止外部对电芯的损伤,铝膜除隔绝水气尚有一用处-阻挡紫外线照射,否则做一颗透明电池;PP :不会被电芯内有机溶剂溶解、溶胀等,是电芯内部环境的最直接的包装保护,绝缘,有效阻
6、止内部电解质等与Al layer接触,避免Al layer被腐蚀。8、 化成后封口抽真空度不够会导致什么现象,一般抽到多少比较合适?产品摸起来硬度不够.真空度在98左右,软包装如果需要外观的话建议在隔膜上涂点PVDF,抽气前加热下,这样电池外观会好很多,但这只适合1mm以下。加点固化剂,形状会好很多。某些电池,特别是一些薄型号在抽真空封口时,会发现真空度已经很高了(0。09MPA),抽的时间也比较长了,但是就是抽不干,电池软软的.有人解释说是隔膜里有气体,造成抽不干,那怎么其他型号没有呢?当然,注液量过多也会造成抽不干,确实现场减少注液量后会发现有好转,但是,注液量减少了对产品的最终性能有影响
7、,如何处理?9、 软包装电芯的极耳中心距控制标准能做到0。5MM吗?通常在控制极耳中心距时是靠什么样的手段是控制的?10、软包装电芯在生产过程中如何预防角位破损?装配工序和灌注电解液工序应最容易出现的,高级(或普通)美纹胶纸,可以在电芯尾部一半贴住主体包住,增加分配拉力,还有电芯要竖着放。我想请问一下,关于软包和铝壳,除了铝塑膜和铝壳的区别外,在设计开发及生产过程中,还有什么特别的不同,或者说各自的注重点在哪?谢谢答:简单回复一下这个问题,两者主要的不同点有二:第一、工艺制程有别,主要表现在封装、注液、化成等;第二、电解液配方不一样,两者承受的耐压值不一样,所以电解液配方有别。我想了解下软包电
8、池 铝塑膜腐蚀的原理 我公司生产电池在顶封部位经常出现腐蚀现象,请问 一般出现的原因还有该怎样避免事故发生。 十分感谢!答:您可以仔细去研究一下,铝塑膜被腐蚀的地方一般都出现在负极耳区,是吗? 如果是这样的,那么原因就很简单了,不过目前流行的解释有三个:第一、铝塑膜中的铝层与负极耳在电解液氛围中形成了一个类似原电池的东西,这样铝层就很容易被氧化而腐蚀;第二、铝层和负极耳接触,由于电位比较低,会形成一部分锂铝合金而造成腐蚀;第三、铝层和负极耳接触,然后在放电过程中失去电子被氧化而腐蚀.铝塑膜腐蚀必须具备两个条件:1、负极耳与铝塑膜铝层接触提供电子通道;2、电解液与铝塑膜铝层接触提供离子通道,只有
9、当两个条件都具备时才会腐蚀铝塑膜。而检验电子通道一般用边电阻的方法,检验离子通道可以用边电压的方法,两者只要一个OK就不会腐蚀在手机方形锂离子以及锂聚合物电池pack过程中,都需要用到什么胶?分别用在哪个部位呢?特别是锂聚合物电池,比如iphone,在pack的过程中需要何种胶?用在什么部位?答:需要用到两种胶,第一种是高温胶纸,硅胶系的,主要起绝缘作用,一般用于极耳位置;第二种是粘结用的胶,譬如双面胶啊,速干胶等,主要用于电池之间的固定。我们生产的软包电池在内部短路时会起火,请问可以从哪些方面进行改进。多谢了答:改善内部短路,唯一的办法就是增加正负极表面阻抗,增加的阻抗方法很多了:第一、最经
10、典的就是松下的表面镀层,在负极表面镀一层三氧化二铝,即使正极和负极接触也不怕,烧不起来;第二、普遍的就是从配方着手,尽量降低SP的含量,或者参杂一些绝缘半导体物质;第三、从隔膜着手,隔膜表面处理厚一点的绝缘层;第四、也就是电解液,添加阻燃的添加剂.我是做软包的,现在生产上的极耳中心距经常控制不好。从两个方面改善:1、卷绕头部极耳位置和极片结构的设计;2、卷针设计,最简单的:在极耳要放置的位置开个小孔,我们就可以看到极耳有没有放到位了.请问软包方形电芯变形(波浪形)是怎么回事啊?电芯尺寸越大越厚的话就越容易出现这样的问题。怎样才可以控制这样的不良现象啊?谢谢!答:波浪形也就是俗称的S型,改善方法
11、为:1、极片卷绕单面设计以及极耳位置设计,千万别将厚度集中在一条线上;2、卷针设计,需要给极片充分的伸展空间;3、卷绕张力控制,因为极片的收缩率和隔膜是不一样的。我也问两个问题吧:1。软包电池做成成品后,正极和负极的首次效率是怎么测的?2。负极的克容量发挥是怎么测出来的?因为我们设计的时候,负极是过量于正极的,所以测定了容量值,也不知道具体有多少克负极参与了容量发挥.答:您这个问题还真不是简单的问题,目前很难在全电池里面测试出正负极各自的效率是多少,一般都是用半电池测试的。同样,第二个问题也是一样的,要向真正测出来,那就用三电极吧。您好。我们公司生产的电芯经常出现铝塑膜分层现象,即CPP层与铝
12、层分层现象.主要出现在两个地方:1。顶侧封时 侧封边发生;2.二封时侧封边分开。电芯下线后做高温高湿测试时100出现二封边CPP层与铝层分离。我们公司一直使用的都是日本昭和铝塑膜,而顶侧封 及二封的设备及参数一直都没有变化过,去年没出现这种想象,今年3月份开始天天都是这样。请问这个到底是怎么回事啊?日本供应商过来后说这个是参数问题。 我不认同他们这种说法。另外除了DNP的铝塑膜以外,还有哪些公司的铝塑膜可以与之相比啊?谢谢。答:最近昭和的铝塑膜确实是出现了分层的问题,其来料品质有异常,检测CPP层与铝层附着力的话达不到标准.目前,能够替代的主要是DNP/韩国栗村/日本大仓等。想问下怎样在注液到
13、化成后抽气封口的过程中防止电解液溅到或者覆盖到铝塑膜表面,另外电解液对铝塑膜的腐蚀是不是对尼龙的腐蚀还是对铝的电化学腐蚀?是单由HF引起的吗?答:比较常用的办法是电芯表面贴一张PET膜,来保护电芯的铝塑膜;另外,就只能靠你们生产的工人注意了。电解液对铝塑膜的腐蚀也没有很好的研究文献,不过个人认为还是有两方面的原因:1、相似者相溶,也就是尼龙是有机物,电解液也是有机溶剂,尼龙沾上电解液后很快溶掉,造成污染;2、就是电解液里面超强的腐蚀性酸HF以及锂盐的分解产物PF5,很快就能够腐蚀尼龙.软包正负极片反弹率控制在多少?有没有范围?负极610,正极3不同颜色的极耳胶性能上有什么差异呢,是不是熔点不一
14、样?如果用DNP的铝塑膜,应该与什么颜色的极耳胶配合更好?谢谢!其实任何一家铝塑膜产品耐液热封层都是PP材质,而现时主流极耳胶供应商(昭和、东冈、DNP)产品三层结构中,其极耳胶外两侧或者说粘结层也都是PP材 质,这样不管哪家极耳胶和铝塑膜都可以相融.所以如果仅从物料层面来探究,本人完全赞成三楼的说法,数码通讯类软包电池选用哪家极耳胶都可以;但由于动力 类产品的特殊性,建议最好用白胶为好(例如东冈因为三层物料同质所以相对抗分层离析能力比DNP黄黑胶要强).从长期耐腐蚀的可靠性来说,白胶的性能最优;由于胶的成分不一样,导致熔点,流动性有较大差异;无论哪种封口胶,热封工艺的选择很关键白胶是改性PP
15、,不同厂家的胶在熔点和分子链结构上稍有区别(比如住友的灰胶,昭和的白胶都是此类);黄胶是加入了无纺布;对黑胶的成分不是很了解。小电池无所谓,大电池最好白胶.胶一般分三层,黑胶:SPP/PEN/SPP;黄胶:MPP/无纺布/SPP;白胶:MPP/CPP/SPP.黑胶和黄胶各层为不同物质,很容易分层,温度高时尤为明显,白胶各层均为PP,可有效避免分层。PEN和无纺布耐电解液性能不好,如果小电池可以使用黄,黑胶,稍大的电池就得使用白胶不同颜色的极耳胶带代表不同厂商的产品,自然在性能和工艺结构上也会有适当的区别。1、从适应性上分析,东冈三层极耳胶不仅适应硬封,也非常适合软封;2、应用层面:不仅在大容量
16、高倍率的动力电池上表现优异,在数码通信能量型领域也同样表现卓越。-所以楼主提问的最佳答案:不管使用哪家的铝塑膜,东冈三层极耳胶都能够匹配严密紧致。我做极耳很多年,什么颜色的胶都用过、建议还是用黑胶和白胶比较保险。至于黄胶还是不要用的好!黄胶出的问题比较多,也经常会出现两种颜色,一个是深黄色和浅黄色,客户也会经常问到此问题,至于白胶也要选好厂家的好!软包装电池顶封侧封问题可以试采用夹具来固定顶封,由夹具顶块定位热封与槽之间留位,那样可能会帮忙你能解决问题。ATL在这方面做的很好。可以学习下!有心总结也不会啊,我的建议:1 首先保证卷绕卷出来的电芯中心距误差不要大于1mm ;2 极耳分切两边胶块要
17、一至不要在于0。2mm;3 极片点焊及贴锂电胶带要平行,不平行易造成卷绕中心距误差大;4 顶封槽位一般比极耳宽度略窄一点.主要是槽位的深度要看各公司的封边工艺自已经验值关于凹槽的宽度还是按照经验结论更实用些,卷绕误差太大:两侧边PP宽度*2+(AL/Ni宽度)-卷绕偏差(0。81。2)=凹槽宽度。PP胶多出0.51mm没有关系。PP胶小于凹槽0.30。5mm是没有关系的,因为顶封完后胶完全可以填满凹槽,不会漏液5 POCKET袋封口处最好能留1mm的翻边余量,这样不会溢胶太多或胶拉丝;6 如果要保证封口处胶不溢太多,可以通过调整极耳点焊端的间距来保证,当然保证PP胶一定要漏出一点或与封口边平行
18、,这样的电芯外观就好了7 不管用什么夹具来定位,方便有效就好,用了工装生产效力一定低,人员又让费,对于这个我们只采用两个单体凹槽对位于极耳。效果也还可以.软包漏液有什么好的办法检测?PH试纸 + 38度恒温箱放置有厂家说把电池放入真空箱抽真空,然后用HF检测仪去检测,如有能测到HF就表示漏,如果没有就表示不漏;这种检漏设备肯定有压板的,调节好真空度,问题也不会很大(造成短路:电池形变过大,隔膜宽度方向正负极短接,尤其是正极箔材空白区域,短路时内阻较小,易形成短路扩散区域,造成电池起火燃烧)正极现在的纳米碳酸铁锂,听说是未来的技术趋势,循环是使用次数也大大提高,是这样的吗?这个会成为今后的发展方
19、向吗?请问,磷酸铁锂和碳酸铁锂有什么异同,性能和工艺有什么区别,另外纳米磷酸铁锂不是现在在炒吗?性能能那么明显的体现吗?还请能不吝指教,谢谢。答:纳米碳酸铁锂目前也只是一个概念,一种材料从提出到产业化最起码也得5年,所以,还请您持观望态度; 纳米磷酸铁锂做成纳米的目的只是为了解决其导电(导电子和离子)性能以及稍微改善低温性能,但是还是不能从根本上弥补磷酸铁锂的缺陷:高温铁溶解、批次间的一次性问题以及应用专利问题。请教一个问题,如何提高钴酸锂压实?除了单纯把颗粒做大还有别的方法吗?工艺上应该如何处理,比如添加剂。多谢!wguangjinqq。com答:提高钴酸锂压实的方法如下:1 大颗粒,这点大
20、家都知道;2 单纯的大颗粒压实往往不会如人意,可以在大颗粒中混点小颗粒,粒径比大约为3:1,这样可以提高压实,原理就是沙子里面掺水;3 从配方改善,尽量提高活性物质的Loading,除了活性物质真密度高以外,其他都是占地方的。我想问的问题是钴酸锂,锰酸锂,磷酸亚铁锂等锂系列电池的电压形成的原理是怎样的?比如钴酸锂,锰酸锂为什么是3.6V 磷酸亚铁锂是3.5V, 还有其他锂系的电池的电压又是多少?有没有什么直观一点的图表解释? 之前我刚接触锂电的时候,看到一份关于各种锂系列电池的电压的图表和形成原理,当时没在意。 因为我是做保护板的,最近要起草一份关于锂电的基础和原理的培训讲义,思路有了 苦于找
21、不到资料。网上搜索 只有常用的那几种的化学反应式。答:这里涉及到一些标准电极电势的概念,国际规定以氢的电位为零,那么就像海拔一样的,我们是规定海平面高度为0,其他地方相对于海平面都有高度,自然界的物质也是一样的,拿钴酸锂和石墨为例,初始状态钴酸锂相对于氢的电位接近0V,石墨相对氢的电位接近0V(我没查书,具体数据请参照电化学相关书籍), 所以,一个锂电池在初始状态的电压是接近0V的.另外,在充放电阶段的电压平台形成的原因就是物理化学里面的相变焓了,随着锂的脱出和嵌入,活性物质会有 一些相变,根据相变焓和电压平台的关系可以计算出在哪些电压位置会产生平台。对于初期电压极化过大的原因是锂离子在脱嵌初
22、期需要克服物质的自由能而产生的 极化.我想请教目前18650 三元国产1C 循环到底什么水平国产三元18650循环500次80是没有任何问题的;国产三元18650 500次循环80%没任何问题?请问是用在哪方面的电池?动力电池还是NB电池?容量是多大呢?循环是在什么样的环境温度下进行?非常感兴趣,望解答。答:三元1C/1C RT循环500次,是NB电池; 动力电池就不用说了,1C/20A循环做500次都没用问题.NB电池容量2.2Ah,动力电池1。5Ah。能不能大概介绍下锂电中用到的各种材料热失控温度是多少?答:热失控温度和材料的充电状态有关,对于完全充电态的正极材料,热失控温度大约如下:钴酸
23、锂:185度;锰酸锂:260度;三元:200度;磷酸铁锂:300度;二元:170要说高温下金属离子的溶解问题,锰酸锂更为突出。目前主要的解决方法还是:(1)通过向Mn(IV)位掺杂异种原子改变尖晶石结构内的原子成份,提高Mn的平均价态(至少要3。55),使得晶格更加强壮;(2)在锰酸锂颗粒表面包裹一层惰性层,直接隔断尖晶石表面与含有痕量HF电解液的接触当然,这些解决方案的采用,无疑会提高锰酸锂材料的生产成本,因此目前仅在高端锰酸锂获得应有1.什么是NCANCA,就是镍钴铝(Nickel, Cobalt, Aluminum)的缩写,化学式为LiNi1xyCoxAlyO2,常见组分有LiNi0。8
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 设计 工艺 问答 总结
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【人****来】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【人****来】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。