分享
分销 收藏 举报 申诉 / 21
播放页_导航下方通栏广告

类型基于Matlab计算程序的电力系统运行分析.doc

  • 上传人:人****来
  • 文档编号:3956210
  • 上传时间:2024-07-24
  • 格式:DOC
  • 页数:21
  • 大小:170.04KB
  • 下载积分:10 金币
  • 播放页_非在线预览资源立即下载上方广告
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    基于 Matlab 计算 程序 电力系统 运行 分析
    资源描述:
    课 程 设 计 课程名称: 电力系统分析  设计题目:基于Matlab计算程序的电力系统运行分析 学 院: 电力工程学院 专 业: 电气工程自动化 年 级: 学生姓名: 指导教师: 日 期: 教 务 处 制 目录 前 言·········································· 1 第一章 参数计算······························· 2 一、目标电网接线图·································· 2 二、电网模型的建立·································· 3 第二章 潮流计算······························· 6 一.系统参数的设置··································6 二. 程序的调试····································· 7 三、对运行结果的分析································ 13 第三章 短路故障的分析计算····················· 15 一、三相短路········································ 15 二、不对称短路······································ 16 三、由上面表对运行结果的分析及在短路中的一些问题···· 21 心得体会·······································26 参考文献·······································27 前 言 电力系统潮流计算是电力系统分析中的一种最基本的计算,是对复杂电力系统正常和故障条件下稳态运行状态的计算。潮流计算的目标是求取电力系统在给定运行状态的计算。即节点电压和功率分布,用以检查系统各元件是否过负荷.各点电压是否满足要求,功率的分布和分配是否合理以及功率损耗等。对现有电力系统的运行和扩建,对新的电力系统进行规划设计以及对电力系统进行静态和暂态稳定分析都是以潮流计算为基础。潮流计算结果可用如电力系统稳态研究,安全估计或最优潮流等对潮流计算的模型和方法有直接影响。 在电力系统中可能发生的各种故障中,危害最大且发生概率较高的首推短路故障。产生短路故障的主要原因是电力设备绝缘损坏。短路故障分为三相短路、两相短路、单相接地短路及两相接地短路。其中三相短路时三相电流仍然对称,其余三类短路统成为不对称短路.短路故障大多数发生在架空输电线路.电力系统设计与运行时,要采取适当的措施降低短路故障的发生概率。短路计算可以为设备的选择提供原始数据。 17 第一章 参数计算 一、目标电网接线图 系统参数 表1. 线路参数表 线路编号 线路型号 线路长度(km) 线路电阻 {Ω/km} 线路正序电抗 {Ω/km} 线路容纳之半 {S/km} 4—5 LGJ-240/30 113 0。047 0.4 1。78× 4—6 LGJ—120/70 120 0。074 1。47× 5—7 LGJ—120/25 165 0。079 1.60× 6—9 LGJ—95/55 166 0。092 1。80× 7—8 LGJ—240/30 92 0。047 1。78× 8—9 LGJ—240/30 122 0.047 1。78× 说明:线路零序电抗为正序电抗3倍。 表2. 变压器参数表 线路编号 变压器型号 变压器变比(kV) 短路电压百分数(%) 2—7 SSPL—220000 242±3×2。5%/20 10。43 3-9 SSPL—120000 242±3×2。5%/15 5。81 1—4 SSPL—240000 242±3×2。5%/17.5 11。42 说明:变压器零序电抗与正序电抗相等,且均为Δ/Y0接法. 表3。 发电机参数表1 发电机 额定功率{MW} 额定电压{kV} 额定功率因数 1 200 16。5 0。85 2 180 18 0。85 3 100 13。8 0.85 表4. 发电机参数表2 发电机 母线名 (S) {Ω} {Ω} {Ω} {Ω} {Ω} (S) (S) 1 1 47。28 0 0.32 0。13 0。21 0.21 8。96 2 2 12.80 0 1。93 0.26 1.87 0。43 6.00 0.535 3 3 6。02 0 1.51 0.21 1。45 0。29 8。59 0。60 表5. 负荷数据表 节点号 有功负荷(MW) 无功负荷(MVA) 5 135 50 6 100 30 8 80 35 二、电网模型的建立 设计中,采用精确计算算法,选取=100MVA,=220KV,将所有支路的参数都折算到220KV电压等级侧,计算过程及结果如下: 1、系统参数的计算 (1)线路参数 计算公式如下: 各条线路参数的结果: 4—5: 4—6: 5—7: 6—9: 7-8: 8—9: (2)变压器参数的计算: (3)发电机参数的计算:(暂态分析时,只用到发电机的暂态电抗来代替其次暂态电抗,故只求出暂态电抗) (4)负荷节点的计算 2.系统等值电路图的绘制 根据以上计算结果,得到系统等值电路图如下: 第二章 潮流计算 一.系统参数的设置 设计中要求所有结点电压不得低于1.0p.u.,也不得高于1。05p.u。,若电压不符合该条件,可采取下面的方法进行调压: (1) 改变发电机的机端电压 (2) 改变变压器的变比(即改变分接头) (3) 改变发电机的出力 (4) 在电压不符合要求的结点处增加无功补偿 调压方式应属于逆调压。 结点的分类: 根据电力系统中各结点性质的不同,将结点分为三类:PQ结点、PV结点和平衡结点,在潮流计算中,大部分结点属于PQ结点,小部分结点属于PV结点,一般只设一个平衡结点。对于平衡结点,给定其电压的幅值和相位,整个系统的功率平衡由这一点承担。本设计中,选1号节点为平衡节点;2、3号节点为P、U节点;4、5、6、7、8、9号结点为P、Q节点。 设计中,节点数:n=9,支路数:nl=9,平衡母线节点号:isb=1,误差精度:pr=0。00001。 由支路参数形成的矩阵: B1=[14 0。0576i 0 1 0; 27 0.0574i 01 0; 3 9 0。0586i 0 1 0; 4 5 0。0114+0。093i0.194i 1 0; 46 0。018+0.099i 0。170i 1 0 5 7 0。027+0。136i 0。026i 1 0 6 9 0。032+0。137i 0.028i 1 0 7 8 0。047+0.076i 0.158i 1 0 8 9 0.012+0。101i 0。022i 1 0]; %支路参数矩阵 由各节点参数形成的矩阵: B2=[2+1.24i 0 1 10 1; 1.8+1.12i 01 1 0 3; 1+0。62i 01 1 0 3 0 0 1 0 0 2; 0 1。35+0.5i 1 0 0 2 0 1+0.3i 1 0 0 2 0 0 1 0 0 2 0 0.8+0。35i 1 0 0 2 0 0 1 0 0 2]; %节点参数矩阵 由节点号及其对地阻抗形成的矩阵: X=[1 0;2 0;3 0;4 0;5 0;6 0;7 0;8 0;9 0]; 二. 程序的调试 1。 未调试前,原始参数运行结果如下: 选用牛顿—拉夫逊法来进行潮流计算,计算结果如下所示: 迭代次数 4 没有达到精度要求的个数 14 16 16 0 各节点的实际电压标幺值E为(节点号从小到大排列): Columns 1 through 4 1。0000 0。9755 + 0。2198i 0.9903 + 0.1390i 0。9727 — 0。0252i Columns 5 through 8 0.9322 — 0.0435i 0.9450 — 0.0394i 0.9769 + 0。1142i 0。9474 + 0.0619i Column 9 0。9755 + 0。0777i 各节点的电压大小V为(节点号从小到大排列): Columns 1 through 7 1.0000 1。0000 1。0000 0。9730 0。9332 0.9458 0。9835 Columns 8 through 9 0.9494 0.9786 各节点的电压角O为(节点号从小到大排列): Columns 1 through 7 0 12.6996 7.9891 —1。4863 -2。6727 —2.3851 6。6694 Columns 8 through 9 3。7358 4.5559 各节点的功率S为(节点号从小到大排列): Columns 1 through 4 0.4382 + 0。4742i 1.8000 + 0。3819i 1。0000 + 0。3957i 0.0000 + 0。0000i Columns 5 through 8 —1.3500 — 0.5000i —1.0000 — 0.3000i -0.0000 + 0.0000i -0。8000 — 0。3500i Column 9 0.0000 + 0。0000i 各条支路的首段功率 Si为(顺序同您输入B1时一样): 0。4382 + 0。4742i 1.8000 + 0。3819i 1.0000 + 0.3957i 0。2497 + 0.2964i 0.1884 + 0。1538i —1.1028 - 0.0482i -0。8133 + 0.0008i 0。6594 - 0.0269i —0。1618 - 0。2637i 各条支路的末段功率 Sj为(顺序同您输入B1时一样): —0。4382 — 0。4501i -1。8000 — 0。1876i -1。0000 - 0。3279i —0.2472 — 0.4518i —0.1867 - 0。3008i 1。1406 + 0。2145i 0。8370 + 0.0746i —0。6382 — 0。0863i 0.1630 + 0。2534i 各条支路的功率损耗DS为(顺序同您输入B1时一样): 0 + 0.0240i 0 + 0。1943i -0。0000 + 0。0678i 0。0026 - 0.1554i 0。0017 — 0。1471i 0。0378 + 0.1663i 0。0237 + 0。0754i 0。0212 — 0.1133i 0。0012 — 0。0103i 以下是每次迭代后各节点的电压值(如图所示) 由运行结果可知,节点4、5、6、7、8、9电压均不满足要求。故需进行调试,以期各结点电压均满足要求。 2。采用NL法进行潮流的计算和分析。 1)第一次调试 将1、2、3号变压器的变比初值1。000均调为1.0250,则修改结果如下: 运行结果如下: 如上所示:节点4、5、6、8都不满足要在1.0000~1。0500范围内的要求,再进行第二次调试. 2)第二次调试 ①将1号变压器变比初值由1.025改至1。050,则修改结果如下: 运行结果如下: 如上所示:节点5、6、8号节点的值仍不满足要求,进行第三次调试. 3)第三次调试 将5、6、8号节点的无功补偿的初值由0均改为0.1,则修改结果如下: 运行结果如下: 如上所示:节点5、6、8、的值,不满足要在1。0000~1.0500范围内的要求。 4. 第四次调试 将5、6、8号节点的无功补偿的初值由0。1均改为0.2,则修改结果如下: 运行结果如下: 如上所示:节点5的值,不满足要在1。0000~1。0500范围内的要求。 5. 第五次调试 将5号节点的无功补偿的初值由0。2改为0。3,则修改结果如下: 运行结果如下: 满足要求,结果如下图所示: 三、对运行结果的分析: 1、为什么在用计算机对某网络初次进行潮流计算时往往是要调潮流,而并非任何情况下只一次送入初始值算出结果就行呢?要考虑什么条件?各变量是如何划分的?哪些可调?哪些不可调? 答:潮流计算时功率方程是非线性,多元的具有多解。初始条件给定后得到的结果不一定能满足约束条件要求,要进行调整初值后才能满足.其约束条件有:,,,。负荷的PQ量为扰动变量,发电机的PQ为控制变量,各节点的V为状态变量.扰动变量是不可控变量,因而也是不可调节的,状态变量是控制变量的函数,因而状态变量和控制变量是可以调节的。所以,计算机对某网络初次进行潮流计算时往往是要调潮流的。 2、潮流控制的主要手段有哪些? 答:潮流控制的主要手段有:(1)改变发电机的机端电压(2)改变变压器的变比(即改变分接头)(3)改变发电机的出力(4)在电压不符合要求的节点处增加无功补偿 3、 牛顿拉夫逊法与PQ分解法有哪些联系?有哪些区别?二者的计算性能如何? 答:(1)联系:它们采用相同的数学模型和收敛判据。当电路的电抗远大于电阻时,可以简化牛顿拉夫逊极坐标的修正方程的系数矩阵得到PQ分解法,且简化后并未改变节点功率平衡方程和收敛判据,因而不会降低计算结果的精度。 (2)区别:P—Q分解法的修正方程结构和牛顿拉夫逊的结构不同。pq分解法由于雅可比矩阵常数化,计算过程中减少了很大的计算量,而且有功和电压幅值,无功和电压相角的完全割裂也大大的对矩阵降维数,减少了一半的计算量,但是他雅克比矩阵常数化是经验值,丧失了一部分稳定收敛的特性,而且当支路电阻与电抗比值较大的时候收敛性也特别差,甚至不收敛 (3)P—Q法按几何级数收敛,牛顿拉夫逊法按平方收敛。PQ分解法把节点功率表示为电压向量的极坐标方程式,抓住主要矛盾,把有功功率误差作为修正电压幅值的依据,把有功功率和无功功率迭代分开进行。它密切地结合了电力系统的固有特点,无论是内存占用量还是计算速度方面都比牛顿—拉夫逊法有了较大的改进。 4、 选取PQ分解法的数据来分析降低网损的方法: 支路 未调整前: 调整后: 支路首端功率 支路末端功率 支路功率损耗 支路首端功率 支路末端功率 支路功率损耗 1—4 0.4382 + 0.4742i —0。4382 — 0。4501i 0 + 0。0240i 0。4272 +0.2600i —0.4272 -0。2456i 0 + 0.0144i 2-7 1。8000 + 0。3819i —1。8000 — 0。1876i 0 + 0.1943i 1。8000 +0。0356i -1。8000 —0。1504i 0 + 0.01860i 4—5 1。0000 + 0.3957i —1。0000 — 0。3279i —0。0000 + 0。0678i 1.0000 —0.0930i —1.0000 +0。0339i 0 + 0.0591i 3—9 0.2497 + 0。2964i —0.2472 - 0.4518i 0.0026 - 0.1554i 0。2343 +0。1543i —0。2330 -0.3463i 0.0013 —0。1920i 4-6 0。1884 + 0。1538i —0。1867 — 0.3008i 0.0017 - 0。1471i 0.1929 +0.0913i —0。19174 —0.2631i 0.0012 —0.1719i 5—7 —1。1028 — 0。0482i 1。1406 + 0。2145i 0.0378 + 0.1663i -1.1170 —0.1518i 1.1508 + 0.0084i 0。0338 +0.01433i 6—9 -0。8133 — 0。0008i 0.8370 + 0。0746i 0.0237 — 0。0754i —0.8083 —0.1687i 0.8297 — 0。1062i 0.0214 —0。0625i 7-8 0.6594 + 0.0269i —0.6382 — 0。0863i 0。0212 — 0。1133i 0。6492 +0。1420i —0。6303 —0。0093i 0。0189 —0。1327i 8—9 -0.1618 - 0。2637i 0。1630 + 0。2534i 0.0012 - 0.0103i —0。1697 —0.1576i 0。1703 - 0.1401i 0。0006 -0。0175i (1)提高机端电压电压和节点电压一定可以使有功损耗降低,但是对于无功损耗来说为正的是可以降低的,为负的则是提高了; (2)另外适当提高负荷的功率因数、改变电力网的运行方式,对原有电网进行技术改造都可以降低网损。 5、 发电机节点的注入无功为负值说明了什么? 答:因为线路无功潮流最有可能的流向由电压的幅值大小决定:由幅值高的节点流向幅值低的节点。由此看出发电机的电压小于节点电压而无功功率的方向是从高电压到低电压,所以发电机的注入无功为负值. 6、负荷功率因数对系统潮流有什么影响? 答:负荷功率因数降低,无功功率就会增大,其输电线路的总电流就会相应增大,从而会造成电压损耗的升高,从而会改变无功功率潮流的大小,严重时甚至会改变方向;反之亦然. 三. 绘制潮流分布图 第三章 故障电流计算 一.三相短路电流的计算 利用结点阻抗矩阵和导纳矩阵都可以计算短路电流,其算法有所不同.利用结点阻抗阵时,只要形成了阻抗阵,计算网络中任意一点的对称短路电流和网络中电流、电压的分布非常方便,计算工作量小,但是,形成阻抗阵的工作量大,网络变化时的修改也比较麻烦,而且结点阻抗矩阵是满阵,需要计算机存储量较大. 对称短路计算的正序等值网络图: 计算程序的输入数据为: 运用节点阻抗矩阵计算三相短路电流: 7点短路时电流的标幺值If= 1.2926 -12.2919i 各节点的电压标幺值U为(节点号从小到大排): 0。7888 + 0.0290i 0.2395 — 0。0000i 0.5706 + 0.0378i 0。6603 + 0。0514i 0。3577 + 0。0770i 0。5701 + 0.0740i 0 0.1793 + 0。0470i 0。4887 + 0。0469i 各支路短路电流的标幺值I为(顺序同您输入B时一样): -0.5241 +14。2642i 0。0000 + 1.9500i -0。2119 + 3。1967i —0.4188 — 3.3595i —0。4444 - 0。2829i —0。5480 — 0。2451i —0.0000 — 5.0518i -0。1269 - 0。1003i —0.1640 - 1。9388i -0.3005 - 3.5434i -0。2499 - 0。9945i 0。6172 - 2。8665i 0。2161 — 0.6490i —0。6754 + 2.5755i 0。0011 + 3.3562i 二. 简单不对称故障短路电流的计算 简单不对称故障(包括横向和纵向故障)与对称故障的计算步骤是一致的,首先算出故障口的电流,接着算出网络中个结点的电压,由结点电压即可确定支路电流,所不同的是,要分别按三个序进行。 (1)系统三序等值网络图如下: 正序网络图 负序网络图 零序网络图 程序运行步骤及对所用变量的解释如下: 表七:各种不对称短路情况下故障点和各支路各序电流标么值 正序电流标么值 负序电流标么值 零序电流标么值 单相接地短路 短路 点 0.4484 — 4。9800i 0.4484 — 4。9800i 0。4484 - 4。9800i 两相短路 短路 点 0。6463 — 6。1459i —0.6463 + 6.1459i 0 两相 接地 短路 短路 点 0.8581 — 9。3168i   -0.4345 + 2.9750i —0。4237 + 6。3418i 单相 接地 短路 14 0.0110 — 1。6307i 0。0100 - 1。4132i 0 27 -0.0536 — 4。1213i -0。0546 — 4。0396i 0 39 —0。0263 - 0。7966i -0.0263 - 0.9786i 0 45 0。0934 — 1。6397i 0.0581 - 1.3385i -0.0560 — 0。7089i 46 —0.0195 — 0.3086i -0。0483 — 0。1529i -0。0337 — 0。0414i 57 0。2633 — 1.1462i 0。0543 — 0。1648i 0。2084 — 0.8109i 69 0.0320 - 0.0677i 0。0638 — 0。0212i 0。0206 — 0.0587i 78 -0.2494 + 1.0179i —0。2656 + 1。1559i —0.2116 + 0。7044i 89 —0.0439 + 1。2340i —0。0290 + 1。1066i 0。0434 + 0。6368i 两 相 短 路 14 0。0496 - 2。6848i -0。0496 + 2。4643i 0 27 0 - 6。6706i 0 + 6。5935i 0 39 —0。0213 — 1。4156i 0.0213 + 1。5976i 0 45 0。1597 — 2.4843i —0。1244 + 2.1831i 0 46 —0.0466 — 0.4063i 0.0754 + 0.2506i 0 57 0。4942 - 2。0326i -0。5469 + 2。3002i 0 69 0。0700 - 0。1707i -0.0923 + 0。2677i 0 78 —0。4428 + 1。7425i 0.4589 — 1。8805i 0 89 —0。0867 + 1.9326i 0。0717 — 1。8053i 0 两相 接地 短路 14 0。0462 - 3。3833i —0。0530 + 1.7658i 0  27 —0.0467 — 8。5385i -0。0467 + 4。7256i 0  39 —0。0387 — 1。8681i 0.0040 + 1.1452i 0  45 0。1794 - 3.1037i -0。1046 + 1.5638i 0。0594 + 0.6551i 46 -0.0697 — 0。4768i 0。0523 + 0.1801i 0。0316 + 0。0379i 57 0。6328 — 2。6881i —0。4083 + 1。6447i —0。1841 + 0.7523i 69 0。0942 — 0。2472i -0。0680 + 0。1912i —0。0184 + 0。0545i 78 —0。5595 + 2。2785i 0。3423 — 1。3445i 0。1882 — 0。6538i 89 -0.0942 + 2。4446i 0.0642 - 1。2934i —0.0469 — 0.5886i 表八:不对称短路情况下各条支路的相电流 各支路A相电流 各支路B相电流 各支路C相电流 单相 接地 短路 14 -0。0709 — 4。0007i —0。2918 + 0.8607i 0。0901 + 0.8607i 27 —0.0000-13。2641i 0。0970 — 1。0297i 0。2306 — 1.0297i 39  —0。1191-2.3760i 0.1174 + 0.2869i —0.1978 + 0。2869i 45 0。0955 - 3。6872i —0。3927 + 0。7497i 0。1291 + 0.8107i 46 -0.1014 — 0。5029i —0.1347 + 0.1644i 0.1350 + 0。2143i 57 0。7877 - 3.3709i 0。1505 + 0。5147i —0。3131 + 0.4234i 69 0。1069 - 0。2912i 0。0615 + 0。0769i —0.1067 + 0。0383i 78 —0.7266 + 2。8782i -0。0736 — 0。3965i 0.1654 - 0。3685i 89 —0.0295 + 2。9774i 0.1901 — 0.5206i —0。0304 - 0。5464i 两 相 短 路 14 0 — 0。2205i —4。4593 + 0.0243i 4。4593 + 0.1962i 27 0 — 0。0771i —11。4871 + 0.0385i 11。4871 + 0。0385i 39 0 + 0。1820i —2。6096 - 0.0540i 2.6096 — 0。1280i 45 0.0353 — 0。3012i -4。0597 - 0.0954i 4。0245 + 0。3966i 46 0。0288 - 0。1557i -0。5833 + 0.1835i 0。5545 — 0。0278i 57 —0.0527 + 0。2676i —3。7260 - 1。0354i 3。7787 + 0。7678i 69 —0.0223 + 0。0971i —0。3685 — 0。1891i 0.3908 + 0。0920i 78 0。0162 — 0。1380i 3。1295 + 0。8499i -3。1457 — 0。7119i 89 -0。0149 + 0。1273i 3.2446 + 0.0735i -3.2297 — 0。2008i 两相 接地 短路 14 0.0853 — 0.9157i -4。3638 + 1。4246i 4.5548 + 1。5964i 27 —0。1401 + 0。9127i —11。4871 + 6。6321i 11.4871 + 6.6321i 39 0。0332 — 0。1680i —2.5243 + 0。9533i 2。6948 + 0。8794i 45 0。1342 — 0。8848i —4。0201 + 1。1791i 4。0641 + 1.6711i 46 0。0142 - 0.2587i —0。5285 + 0。2919i 0.6092 + 0。0806i 57 0。0404 — 0。2911i -4。0488 + 0。3724i 3。4560 + 2.1756i 69 0。0078 — 0。0014i —0。4112 — 0。0581i 0.3482 + 0。2230i 78 —0。0290 + 0。2802i 3。4344 - 0。3399i —2.8408 - 1。9017i 89 —0.0769 + 0。5627i 3.2053 - 1。0270i —3。2691 - 1。3014i 表九:不对称短路情况下各结点处的相电压 A相电压 B相电压 C相电压 单相 接地 短路 1 0.8295 + 0。0260i —0.4147 - 0。8790i —0.4147 + 0。8531i 2 0.3847 + 0。0096i —0。1924 — 0。8702i -0。1924 + 0。8618i 3 0。6531 + 0。0358i -0.3265 — 0。8839i -0。3265 + 0。8482i 4 0。7191 + 0.0488i -0。3796 — 0.9164i —0。3796 + 0。8756i 5 0.3918 + 0。0867i —0.3328 — 0.8924i -0。3328 + 0.8553i 6 0。6407 + 0。0699i —0。3430 - 0。9060i —0。3430 + 0。8501i 7 —0。0000 + 0.0000i —0.2946 — 0.9093i -0。2946 + 0.8719i 8 0.2133 + 0。0535i —0.2928 — 0。8883i —0.2928 + 0。8512i 9 0.5735 + 0。0456i -0。3129 - 0。9054i -0.3129 + 0。8634i 两 相 短 路 1 1。0000 —0.4749 - 0。6831i -0.5251 + 0.6831 2 1。0000 -0。5000 - 0。2074i —0。5000 + 0.2074i 3 1。0000 -0。4672 - 0。4942i -0.5328 + 0。4942i 4 1。0346 -0。4728 — 0。5719i —0。5618 + 0。5719i 5 1。0090 —0.4378 — 0。3098i —0。5712 + 0。3098i 6 1。0139 —0。4428 — 0。4938i -0.5711 + 0.4938i 7 1。0284 —0.5142 —0。5142 8 1.0043 —0。4614 - 0。1552i —0.5429 + 0.1552i 9 1.0212 ——0。4700 — 0。4232i —0.5512 + 0.4232i 两相 接地 短路 1 0。8920 + 0。0190i —0.4209 - 0。6927i -0。4711 + 0。6736i 2 0.6092 + 0。0143i -0。3046 — 0。2154i -0.3046 + 0.1994i 3 0.7801 + 0。0278i —0.3573 — 0。5081i -0。4228 + 0。4802i 4 0.8602 + 0。0299i —0。3602 - 0.5925i -0.4492 + 0。5512i 5 0。7914 + 0.0286i —0。1557 - 0。3597i —0.2891 + 0。2600i 6 0.8063 + 0。0404i -0。3105 — 0。5235i -0。4387 + 0。4640i 7 0。7499 + 0。0302i -0.0000 - 0。0000i -0。0000 + 0。0000i 8 0。7388 + 0.0297i —0.0924 — 0。1859i —0.1738 + 0。1245i 9 0.7706 + 0。0325i -0。3115 — 0.4425i —0.3927 + 0。4040i 表十:不对称短路情况下短路点处相电流标幺值 单相接地短路 两相短路 两相接地短路 故障点处A相电流 1。5832 —19.6699i 故障点处A相电流 0 故障点处A相电流 0 故障点处B相电流 0 故障点处B相电流 —18。5127 — 1.7422i 故障点处B相电流  —19.1404 + 7。3630i 故障点处C相电流 0 故障点处C相电流 18.5127 + 1.7422i 故障点处C相电流 17。8850 +10。8474i 3。短路点故障电流有名值的计算: 表十一:各种短路情况下短路点处序电流有名值(KA) 正序电流有名值(KA) 负序电流有名值(KA) 零序电流有名值(KA) 单相接地短路 短路 点 0。1325 – 1。6457i 0.1325 – 1.6457i 0。1325 – 1。6457i 两 相短路 短路 点 0。2525—2.6828i -0。2525 +2.6828i 0 两相 接地 短路 短路 点 0.3050—3。4446i   -0。1999 + 1。9210i -0.1050 + 105236i 表十二:各种短路情况下短路点处相电流有名值(KA) 单相接地短路 两相短路 两相接地短路 三相短路 故障点处A相电流  0。3974 -4.9371i 故障点处A相电流 0 故障点处A相电流 0 短路点7电流 0。5049—5.3655i 故障点处B相电流 0 故障点处B相电流 -4。6467–0。4373i 故障点处B相电流—4。8042+ 1。8481i 故障点处C相电流 0 故障点处C相电流 4.6467+ 0。4373i 故障点处C相电流 4。4891 +2。7227i 三. 对运行结果的分析 本设计中,在各种短路情况中:三相对称的短路的电流最大,标么值为13.74,其次
    展开阅读全文
    提示  咨信网温馨提示:
    1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
    2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
    3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
    4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
    5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
    6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

    开通VIP折扣优惠下载文档

    自信AI创作助手
    关于本文
    本文标题:基于Matlab计算程序的电力系统运行分析.doc
    链接地址:https://www.zixin.com.cn/doc/3956210.html
    页脚通栏广告

    Copyright ©2010-2025   All Rights Reserved  宁波自信网络信息技术有限公司 版权所有   |  客服电话:0574-28810668    微信客服:咨信网客服    投诉电话:18658249818   

    违法和不良信息举报邮箱:help@zixin.com.cn    文档合作和网站合作邮箱:fuwu@zixin.com.cn    意见反馈和侵权处理邮箱:1219186828@qq.com   | 证照中心

    12321jubao.png12321网络举报中心 电话:010-12321  jubao.png中国互联网举报中心 电话:12377   gongan.png浙公网安备33021202000488号  icp.png浙ICP备2021020529号-1 浙B2-20240490   


    关注我们 :微信公众号  抖音  微博  LOFTER               

    自信网络  |  ZixinNetwork